PRODUCTIVITY ASSESSMENT OF STAGGERED PLANTED RAINFED MAIZE GENOTYPES: SIMULATION ON AGRONOMIC MANAGEMENT AND CLIMATE CHANGE SCENARIOS USING CSM-CERES-MAIZE MODEL

UMESH SHRESTHA

AUGUST 2014

PRODUCTIVITY ASSESSMENT OF STAGGERED PLANTED RAINFED MAIZE GENOTYPES: SIMULATION ON AGRONOMIC MANAGEMENT AND CLIMATE CHANGE SCENARIOS USING

CSM-CERES-MAIZE MODEL

UMESH SHRESTHA

THESIS SUBMITTED TO THE TRIBHUVAN UNIVERSITY INSTITUTE OF AGRICULTURE AND ANIMAL SCIENCE RAMPUR, CHITWAN, NEPAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN AGRICULTURE (AGRONOMY)

AUGUST 2014

CERTIFICATE

This is to certify that the thesis entitled "PRODUCTIVITY ASSESSMENT OF STAGGERED PLANTED RAINFED MAIZE GENOTYPES: SIMULATION ON AGRONOMIC MANAGEMENT AND CLIMATE CHANGE SCENARIOS USING CSM-CERES-MAIZE MODEL" submitted in partial fulfillment of the requirements for the degree of Master of Science in Agriculture with major in Agronomy of the Postgraduate Program, Institute of Agriculture and Animal Science, Rampur, is a record of original research carried out by Mr. UMESH SHRESTHA, Id No. R-2012-AGR-07 M under my supervision, and no part of the thesis has been submitted for any other degree or diploma.

The assistance and help received during the course of this investigation have been acknowledged.

Asst. Prof. Lal Prasad Amgain, Ph.D. Chairman of the Advisory Committee Department of Agronomy Date: The thesis attached hereto, entitled "PRODUCTIVITY ASSESSMENT OF STAGGERED PLANTED RAINFED MAIZE GENOTYPES: SIMULATION ON AGRONOMIC MANAGEMENT AND CLIMATE CHANGE SCENARIOS USING CSM-CERES-MAIZE MODEL" prepared and submitted by Mr. UMESH SHRESTHA, in partial fulfillment of the requirements for the degree of Master of Science in Agriculture (Agronomy), is hereby accepted.

Assoc. Prof. Khem Raj Dahal Member, Advisory Committee Date: Senior Scientist Tika Bahadur Karki Member, Advisory Committee Date:

Prof. Durga Datta Dhakal, Ph.D. Chairman, Advisory Committee Date:

Accepted as partial fulfillment of the requirements for the degree of Master of Science in Agriculture (Agronomy).

Prof. Gopal Bahadur K.C., Ph.D. Assistant Dean (Academics) Postgraduate Program Date:

Prof. Narendra Kumar Chaudhary Dean Institute of Agriculture and Animal Science Date:

ACKNOWLEDGEMENT

I express my deep sense of gratitude to Asst. Prof. Lal Prasad Amgain, Ph.D., Department of Agronomy, Institute of Agriculture and Animal Science (IAAS), Rampur; chairman of my Advisory committee; for his valuable suggestions, constructive comments and encouragement throughout the research period as well as during the preparation of this thesis.

I also express my warm regards to the members of the Advisory committee, Assoc. Prof. Khem Raj Dahal, Department of Agronomy and Mr. Tika Bahadur Karki (NMRP) for their constructive critism and suggestions while preparing this thesis.

I am also indebted to Prof. Narendra Kumar Chaudhary, Dean; Prof. Dr. Gopal Bahadur K.C, Assistant Dean (Academics) and Coordinator of Post graduate Program, IAAS, T.U. for their guidance and administrative support during my entire programme of study.

All the staffs of Agronomy department are acknowledged for providing the necessary facilities during my entire programme of study.

I am grateful to the whole unit of Caritas Nepal for providing the thesis grant as well as regular suggestions and help while conducting research works. I am also thankful to Mrs. Koshila Adhikari; Village Research Assistant of the area for her kind cooperation during research period.

Finally, my sincerest and profound thanks goes to my beloved parents; Mukunda Shrestha and Renu Shrestha and well wishers for their permanent inspiration, love, patience and understanding during my study period.

Umesh Shrestha

TABLE OF CONTENTS

Title	Page
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF APPENDICES	xiv
ACRONYMS	xvii
ABSTRACT IN ENGLISH	XX
ABSTRACT IN NEPALI	xxii
1 INTRODUCTION	1
1.1 Background	1
1.2 Objectives	4
2 LITERATURE REVIEWS	5
2.1 Rainfed farming	5
2.2 Status of rain-fed maize production in Nepal	5
2.3 Climate change in Nepal	6
2.3.1 Changing temperature	7
2.3.2 Changing precipitation pattern	7
2.4 Climate requirement of maize	7
2.5 Effect of heat stress in spring maize	8
2.6 Effect of drought in spring maize	10
2.6.1 Drought effects during vegetative growth	10
2.6.2 Drought effect during flowering	10

2.6.3 Drought effect in grain filling stage	12
2.6.4 Effect of solar radiation	12
2.7 Spring maize in Nepal	13
2.8 Effect of climate change in spring maize production	14
2.9 Climate change adaptation in maize	15
2.10 Adoption of crop management practices	15
2.11 Effect of planting date on grain yield	16
2.12 Effect of planting date on kernel number	16
2.13 Effect of planting date on kernel mass	17
2.14 Effect of planting date on growth and dry matter yield	18
2.15 Stress tolerant maize cultivars in Nepal	18
2.16 Criteria for selection of suitable maize cultivar	19
2.17 Simulation modeling	21
2.18 Decision support system for agro technology transfer (DSSAT 4.5)-Crop	
simulation Model (CSM)	22
2.19 CERES-maize model	24
2.19.1 Improvement of crop management practices	24
2.19.2 Impact assessment of climatic variation	25
3 MATERIALS AND METHOD	26
3.1 Description of the field experiment	26
3.1.1 Location and cropping history	26
3.1.2 Weather condition during experimental period	27
3.1.3 Soil sampling and analysis	28
3.1.3.1 Mechanical analysis	28

3.1.3.2 Physical analysis	28
3.1.3.3 Chemical analysis	29
3.2 Experimental details	
3.2.1 Field layout for experiment	30
3.2.2 Treatment details	31
3.3 Description of tested maize cultivars	31
3.3.1 Local cultivar	31
3.3.2 Poshilo makai-1	32
3.3.3 RML-4/17	32
3.3.4 Arun-2	32
3.4 Cultural practices	33
3.4.1 Land preparation	33
3.4.2 Fertilizer and manure application	33
3.4.3 Seed rate and sowing	33
3.4.4 Gap filling and thinning	34
3.4.5 Irrigation	34
3.5.6 Weed control	34
3.4.7 Plant protection	34
3.4.8 Harvesting and drying	34
3.5 Observation recorded to estimate growth and yield attributes and grain	
response	35
3.5.1 Biometric observation	35
3.5.1.1 Leaf area index (LAI)	35
3.5.1.2 Leaf area duration (LAD)	35

3.5.1.3 Dry matter accumulation	36
3.5.1.4 Crop growth rate (CGR)	36
3.5.2 Yield attributing characters	36
3.5.2.1 Number of harvested ears	36
3.5.2.2 Number of ears plant ⁻¹	37
3.5.2.3 Number of kernel rows ear ⁻¹	37
3.5.2.4 Number of kernels row ⁻¹	37
3.5.2.5 Thousand grain weight (TGW)	37
3.5.2.6 Grain moisture content (%)	37
3.5.2.7 Biological yield	37
3.5.2.8 Grain yield	38
3.5.2.9 Stover yield	38
3.5.2.10 Harvest index	38
3.6 Observation recorded to estimate agro-climatic indices	38
3.6.1 Days to phenological stages	38
3.6.1.1 Emergence	38
3.6.1.2 Days to 75% tasseling	39
3.6.1.3 Days to 75% silking	39
3.6.1.4 Days to physiological maturity	39
3.6.1.5 Heat units	39
3.6.1.5.1 Growing degree days	39
3.6.1.5.2 Phenothermal index (PTI)	39
3.6.1.5.3 Heat use efficiency	39
3.7 Statistical analysis	39

3.8 Observation estimation for model testing	40
3.8.1 Simulation modeling	40
3.8.1.1 Data requirements for model evaluation	40
3.8.1.2 Model calibration	40
3.8.1.3 Model validation and evaluation	41
3.8.1.4 Sensitivity analysis	42
4 RESULTS	43
4.1 Statistical analysis	43
4.1.1 Growth attributes of maize	43
4.1.1.1 Above ground dry matter (AGDM)	43
4.1.1.2 Leaf area index	45
4.1.1.3 Leaf area duration	47
4.1.2 Yield attributing characters and yield	48
4.1.2.1 Grain yield and stover yield	48
4.1.2.2 Harvest index	49
4.1.2.3 The yield components	50
4.1.2.4 Correlation regression studies	53
4.2 Effect of agro-climatic indices	54
4.2.1 Days to Phenological stages	54
4.2.2 Growth degree days (GDD)	56
4.2.3 Phenothermal index (PTI)	58
4.2.4 Heat use efficiency (HUE)	60
4.3 CSM-CERES-MAIZE Model	61
4.3.1 Model calibration	61

4.3.1.1 Calibrated genetic coefficients of tested cultivars	62
4.3.2 Model validation	63
4.3.3 Sensitivity analysis	66
4.3.3.1 Sensitivity analysis for sowing dates	66
4.3.3.2 Sensitivity for no water stress condition	67
4.3.3.3 Sensitivity analysis to variety	68
4.3.3.4 Simulation to weather years	69
4.3.3.4 Simulation to climate change parameters	72
5 DISCUSSION	75
5.1 Dry matter production	75
5.2 Leaf area index and duration	77
5.3 Grain yield	78
5.4 Stover yield	80
5.5 Harvest index	81
5.6 Kernel row	81
5.7 Kernel number row ⁻¹	81
5.8 Kernel weight	82
5.9 Days to phenological stages	83
5.10 Growth degree days	85
5.11 Phenothermal index	85
5.12 Heat use efficiency	85
5.13 Model calibration and validation	86
5.14 Sensitivity analysis	86
5.14.1 Sensitivity to sowing dates	86

5.14.2 Simulation to weather years	87
5.14.3 Simulation to climate change parameters	87
6 Summary and conclusion	90
6.1 Summary	90
6.2 Conclusion	94
LITERATURE CITED	96
APPENDICES	116
BIOGRAPHICAL SKETCH	150

LIST OF TABLES

Tab	Table	
1	Mechanical analysis of soil of experimental plot at Shiva-mandir-2,	
	Nawalparasi during 2013	28
2	Physical properties of soil of experimental plot at shivamandir-2, Nawalparasi	
	during 2013	29
3	Chemical properties of soil of experimental plot during 2013 at Shiva-mandir-	
	2, Nawalparasi	29
4	Date of harvesting of maize cultivars planted in different dates	35
5	Effect of sowing dates and varieties on dry matter accumulation of maize at	
	different growth stages during spring, 2013 at Shiva mandir-2, Nawalparasi	45
6	Effect of sowing dates and varieties on leaf area indices (LAI) and leaf area	
	duration (LAD) at different growth stages of maize during spring, 2013 at	
	Shiva mandir-2, Nawalparasi	47
7	Effect of sowing dates and varieties on grain yields (tha ⁻¹), Stovar yield (t ha ⁻¹)	
	and harvest index of maize during spring, 2013 at Shiva mandir-2,	
	Nawalparasi	50
8	Effect of sowing dates and varieties on yield attributing characters of maize	
	during spring, 2013 at Shiva mandir-2, Nawalparasi	52
9	Effect of sowing dates and varieties on days to phenological stages of maize	
	during spring season, 2013 at Shiva mandir-2, Nawalparasi	56
10	Effect of sowing dates and varieties on growth degree days accumulated at	
	different phonological stages of maize during spring season, 2013 at Shiva	
	mandir-2, Nawalparasi	58

11	Effect of sowing dates and varieties on Phenothermal index at different	
	phenological stages of maize during spring season, 2013 at Shiva mandir-2,	
	Nawalparasi	60
12	Heat use efficiency (HUE) of different maize cultivars as affected by planting	
	dates	61
13	Genetic coefficient of maize cultivars during spring, 2013 at shiva mandir-2,	
	Nawalparasi	63
14	Sensitivity of simulated yields of maize cultivars to sowing dates	67
15	Sensitivity of simulated yields of maize cultivars to no water stress condition	68
16	Sensitivity on simulated yields of maize to various cultivars	69
17	Sensitivity of simulated yields of maize cultivars to weather years	70
18	Sensitivity analysis of maize cultivars with changes in temperature, solar	
	radiation and CO ₂ concentration	74

•

LIST OF FIGURES

Figure	
Map of Nawalparasi district showing research site (Shiva Mandir VDC)	26
Average weather records during research period (10 days interval) at Shiva	
mandir-2, Nawalparasi, 2013	27
Layout of experimental field	30
Layout of individual plot	31
Relationship between grain yield and number of kernel rows ear-1 at Shiva	
Mandir-2, Nawalparasi, 2013	53
Relationship between grain yield and no of kernels per row at Shiva Mandir-2,	
Nawalparasi, 2013	53
Relationship between grain yield and 1000 grain weight (g) at Shiva Mandir-	
2, Nawalparasi,2013	54
Simulated and observed anthesis days of treatments	64
Simulated and observed physiological maturity days of treatments	64
Simulated and observed grain yield of treatments	65
Simulated and observed no of grain per m ² of treatments	65
Simulated and observed unit weight at maturity for different treatments	65
Average solar radiation pattern of every 20 days from 97 to 256 period of	
years	71
Average maximum temperature pattern of every 20 days from 97 to 256	
period of years	71
Average minimum temperature pattern of every 20 days from 97 to 256	
period of year (2005-2013)	71
Average rainfall pattern of every 20 days from 97 to 256 period of years	72
	rre Map of Nawalparasi district showing research site (Shiva Mandir VDC) Average weather records during research period (10 days interval) at Shiva mandir-2, Nawalparasi, 2013 Layout of experimental field Layout of individual plot Relationship between grain yield and number of kernel rows ear ⁻¹ at Shiva Mandir-2, Nawalparasi, 2013 Relationship between grain yield and no of kernels per row at Shiva Mandir-2, Nawalparasi, 2013 Relationship between grain yield and 1000 grain weight (g) at Shiva Mandir-2, Nawalparasi, 2013 Simulated and observed anthesis days of treatments Simulated and observed physiological maturity days of treatments Simulated and observed physiological maturity for different treatments Average solar radiation pattern of every 20 days from 97 to 256 period of years Average maximum temperature pattern of every 20 days from 97 to 256 period of years Average minimum temperature pattern of every 20 days from 97 to 256 period of year (2005-2013)

LIST OF APPENDICES

Appendix		Page
1	Means for leaf area indices (LAI) and leaf area duration (LAD) at	
	different growth stages as affected by three sowing dates and four	
	different cultivars in maize during spring, 2013 at Shiva mandir-2,	
	Nawalparasi	116
2	Means above ground dry matter production at different growth stages as	
	affected by three sowing dates and four different cultivars in maize during	
	spring, 2013 at Shiva mandir-2, Nawalparasi	116
3	Means days at different phenological stages as affected by three sowing	
	dates and four different cultivars in maize during spring, 2013 at Shiva	
	mandir-2, Nawalparasi	117
4	Means growth degree days at different phenological stages as affected by	
	three sowing dates and four different cultivars in maize during spring,	
	2013 at Shiva mandir-2, Nawalparasi.	117
5	Means phenothermal index at different phenological stages as affected by	
	three sowing dates and four different cultivars in maize during spring,	
	2013 at Shiva mandir-2, Nawalparasi	118
6	Means for different yield attributes of maize as affected by three sowing	
	dates and four different cultivars in maize during spring, 2013 at Shiva	
	mandir-2, Nawalparasi	118
7	Means for grain yield (t ha ⁻¹), stover yield (t ha ⁻¹) and harvest index of	
	maize as affected by three sowing dates and four different cultivars in	
	maize during spring, 2013 at Shivamandir-2, Nawalparasi	119
8	Summary of probability values for DM from analysis of variance	119

9	Summary of probability values for LAI and LAD from analysis of	
	variance	119
10	Summary of probability values for yield and yield attributing character	
	from analysis of variance	120
11	Summary of probability values for days to phonological stage from	
	analysis of variance	120
12	Summary of probability values for growth degree days to phenological	
	stages from analysis of variance	120
13	Summary of probability values for phenothermal index to phenological	
	stages from analysis of variance	120
14	'soil file' used in spring maize experiment for running 01NP1301.MZX	
	experiment file	121
15	'A file' used in spring maize experiment for running 01NP1301.MZX	
	experiment file	122
16	'T file' used in spring maize experiment for running 01NP1301.MZX	
	experiment file	122
17	'X file' used in spring maize experiment for running 01NP1301.MZX	
	experiment file	125
18	'W file' used in spring maize experiment for running 01NP1301.MZX	
	experiment file	132
19	Calibration runs to determine genetic coefficients of Local maize during	
	spring, 2013 at Shiva mandir-2, Nawalparasi	147
20	Calibration runs to determine genetic coefficients of Local maize during	
	spring, 2013 at Shiva mandir-2, Nawalparasi	148

21	Calibration runs to determine genetic coefficients of RML-4/17 during		
	spring, 2013 at Shiva mandir-2, Nawalparasi	148	
22	Calibration runs to determine genetic coefficients of Arun-2 during		
	spring, 2013 at Shiva mandir-2, Nawalparasi	149	

ACRONYMS

%	Percentage
@	At the Rate of
⁰ C	Degree Celsius
AGDM	Above Gross Dry Matter
AGDP	Agriculture Gross Domestic Product
ANOVA	Analysis of Variance
APP	Agriculture Perspective Plan
ASI	Anthesis and Silking Interval
CERES	Crop Estimation through Resource and Environment Synthesis
CGR	Crop growth rate
CH ₄	Methane
CIMMYT	Centro International de Mejoramiento de Maizy Trigo
cm	Centimeter
Co ₂	Carbon dioxide
CSM	Crop Simulation Model
CV	Coefficient of Variation
DAP	DI-Ammonium Phosphate
DAS	Days After Sowing
DAT	Days After Transplanting
DHM	Department of Hydrology and Meteorology
DLL	Drained lower limit
DMRT	Duncan's Multiple Range Test
DSSAT	Dicision Support System for Agrotechnology Transfer

DUL	Drained Upper Limit
Et al.	et alii
FAO	Food and Agricultural Organization
FYM	Farm Yard Manure
g	Gram
GDD	Growing Degree Day
GDP	Gross Domestic Product
GHG	Green House Gases
HI	Harvest Index
HMG/N	His majesty the government of Nepal
IAAS	Institute of Agriculture and Animal Science
IBSNAT	International Benchmark Sites Network for Agrotechnology Transfer
IPCC	Intergovernmental Panel on Climate Change
K ₂ O	Potassium Oxide
Kg	Kilo Gram
KN	Kernel Number
KW	Kernel Weight
LA	Leaf Area
LAD	Leaf Area Duration
LAI	Leaf Area Index
LSD	Least Significant Difference
m ⁻²	Meter Square
Max	Maximum
Min	Minimum
MoAD	Ministry of Agriculture and Development

MOP	Muriate of Potash
Ν	Nitrogen
N.S.	Non-significant
N_2O	Nitrous Oxide
NARC	Nepal Agricultural Research Council
NMRP	National Maize Research Programme
OPV	Open pollinated Varieties
P_2O_5	Phosphorous Oxide
PAR	Photo Synthetically Active Radiation
ppm	Parts per Million
PTI	Phenothermal Index
QPM	Quality Protein Maize
RCBD	Randomized Complete Block Design
RMSE	Root Mean Square Error
RUE	Radiation Use Efficiency
SEm	Standard Error of Mean
tha ⁻¹	Ton per Hectare
VDC	Village Development Community

ABSTRACT

Name: Umesh Shrestha Semester and year of admission: 1st, 2012 Major subject: Agronomy Major advisor: Asst. Prof. Lal Prasad Amgain, Ph.D. Id. No.: R-2012-AGR-07 M Degree: M.Sc.Ag. Department: Agronomy

A field experiment and simulation modeling study in combination for different maize cultivars planted at different sowing dates were accomplished at Shiva mandir-2, Nawalparasi during spring season of 2013 to assess the productivity and best agronomic management options under changing climate scenarios using CSM-CERES-Maize model. Combined treatments of four cultivars {Local, Poshilo makai-1 (QPM), RML-4/17 (Hybrid) and Arun-2} and three sowing dates (7th April, 22nd April and 7th May) were assigned in field and each treatment was replicated thrice in a factorial RCB design. Result showed that RML-4/17 produced higher kernel rows ear⁻¹(13.77), kernels per row (30.42) and test weight (244.9). Significantly higher grain yield was also found for RML-4/17 (6.03 t ha^{-1}) compared to Poshilo makai-1 (4.73 t ha⁻¹), Arun-2 (3.55 t ha⁻¹) and Local (2.92) t ha⁻¹). Earlier sowing date (7th April) actually produced higher kernel row⁻¹ (27.97), kernel rows ear⁻¹ (12.89) and 1000 grain weight (232.0 g). Significantly higher grain yield (5.13 t ha⁻¹) was obtained in earlier sowing date (7th April). Although the mean ambient temperature during research period was increasing with delayed sowing, days to attain different phenological stages were decreased with late sowing. Though statistically similar GDD was recorded for different sowing dates the higher PTI values were noticed with delay in planting. Similarly, heat use efficiency (HUE) was found higher in early sowing date. Arun-2 had small reduction in HUE so that it can be considered stable and best cultivar among the tested cultivars. The CSM-CERES-Maize model was calibrated well and found well validated with days to anthesis (RMSE = 0.426 and D-index = 0.998), days to physiological maturity (RMSE = 0.674 day and D-index=0.999), number of grain m^{-2} at

maturity (RMSE= 85.287 grain m⁻² and D-index =0.993), unit weight at maturity (RMSE) =0.012 g kernel⁻¹ and D-index= 0.854) and grain yield (RMSE = 54.94 kg ha⁻¹ and D-index = 1.00). The model was sensitive to sowing dates, under no water stress condition, cultivars, weather years and climate change parameters. Sensitivity analysis to sowing dates stated that 17th April was considered the best sowing date for Local and Arun-2, whereas for RML-4/17 and Poshilo makai-1, 12th April and 7th April were considered the best sowing dates, respectively. Under no water stress condition, model predicted yields of hybrid would have been increased more by 18.23% and this increment was higher than other cultivars. Among other cultivars under sensitivity analysis, Rampur Composite can be considered the best cultivar as it had the highest simulated yield (6493 kg ha⁻¹). Similarly, sensitivity analysis for weather years resulted 2006 was good for all maize cultivars followed by 2007 and yield seemed to be in decreasing order in rest of the weather years. The sensitivity for various climate change scenarios indicated that there was decreased trend in simulated spring maize yield with the increment of maximum and minimum temperature and decrease in solar radiation and Carbon-dioxide concentration. Even 2 °C rise in temperature can decrease around 15% yield of spring maize and this negative effect was even more pronounced in hybrid than other cultivars.

Asst. Prof. Lal Prasad Amgain, Ph.D. Major advisor Umesh Shrestha Author

zf]w-;f/

gfd M pd]z >]i7	kl/ro kq g+= cf/-@)^(-
PhL=ct/=	
;qfGt tyf egf{ jif{ M k yd, @)^(pkflw M s[lif :gftsf]Q/
d'Vo ljifo M afnL lj1fg	ljefu M afnL lj1fg
d'Vo ;Nnfxfsf/ M pk-k f=8f= nfn k ;fb cdufO	

lzjąu/ –@, gink/f;Lsf] kl/j]zsf] nflu pQd ds}sf] hft / pko'Qm /f]Kg] ;do kQf nufpg rf/ hftsf ds}x?nfO{ -nf]sn, kf]l;nf] ds}-!, cf/=Pd=Pn= - $\div!$ & / c?0f - @ , tLg i6f ;dodf -r}g @%, j}zfv !) / j}zfv @% /f]k]/ Plss[t v]tL k/Llf0f lj=;+= @)&) ;fnsf] j;Gt Ct'df ul/of] . o;}df l;/Lh ds} df]8nsf] k|of]u u/L alb\nbf] df};ddf /fd|f] v]tLsf] Joj:yfkgsf pkfox? kQf nufpg] sfd klg ul/of] . o kl/lf0fdf /]08f]dfOH8 slDKn6 Ans l8hfOgdf # k6s bf]xf]¥ofO{Psf] lyof] . k/Llf0fsf] glthf cg';f/ cf/=Pd=Pn=-\$÷!& df bfgfsf] xf/ ;+Vof k|lt 3f]uf -!#=&&_, bfgf ;+Vof k|lt xf/ -#)=\$@_ / !))) bfgfsf] tf}n -@\$\$=() u|fd_ c? hftsf] ds}x? eGbf a9L kfOof] . c? hftx?df eGbf cf/=Pd=Pn=-\$+!& d} a9L pTkfbg $-^=$)# 6g k|lt x]=_ kfOof] . o;} ul/ r}q @% ut] /f]lkPsf] ds}df al9 pTkfbg -%=!# 6g k|lt x]=_ b]lvof] . ;fy}, o;} ;dodf k|lt xf/ bfgfsf] ;+Vof -@&=(&_; bfgf xf/ ;+Vof k|lt 3f]uf -!@=*(_ / !))) bfgfsf] tf}n -@#@ u|fd_ c? /f]Kg] ;dox?df eGbf al9 kfOof] . l9nf] /f]k]sf] ds}df al9 tfks|dn] ubf{ 5f]6f] ;dod} lileGg km]gf]nf]lhsn :6]hx? b]lvof] . oBlk ;a} /f]Kg] ;dox?df ;dfg lh=l8=l8= b]vf k/] klg lk=l6=cfO= eg] kl5Nnf] ;dodf /f]lkPsf ds}df al9 kfOof] lx6 o'h Olkm;]G;L eg] klxn] /f]lkPsf] ds}df al9 kfOof] . c?0f-@ x/]s /f]Kg] ;dodf I:y/ Ix6 o'h Olkm;]G;L kfOPsf] cfwf/df o; hftnfO{ /fd|f] dfGg

xxii

;lsG5 . df]8nnfO{ rd/f lg:sg]] lbg -cf/=Pd=P;=O{= Ö)=\$@^ lbg / l8:6f6\ Ö)=((*_, ds} kfSg] lbg -cf/=Pd=P;=O{= Ö)=^&\$ lbg / l8:6f6\ Ö)=(((_, pTkfbg -cf/=Pd=P;=O{= 0 %\$=(\$ s]=hL= k|lt x]= / l8:6f6\ 0 !=))_, kfSg] a]nfsf] k|lt bfgfsf] tf}n -cf/=Pd=P;=O{= Ö)=)!@ u|fd k|lt bfg / l8:6f6\ Ö)=*%\$_ / kfSg] a]nfsf] ;+Vof -cf/=Pd=P;=O{= 0 *%=@*& bfgf k|lt ju{ ld6/ :SjfP/ / I8:6f6\ O) = ((#_ sf cfwf/df k|dfl0fs/0f ul/of] . df]8nnfO{ lileGg /f]Kg] ;do, ligf kfgLsf] k|lts'n cj:yfaf6 arfpbf, lileGg hftx?, lileGg jif{ / hnjfo' kl/jt{g cfwf/df rnfpbf ;]G;]l6e kfOof] . /f]Kg] j]nfsf] ;]G;]l6lel6sf] gflthf cg';f/ j}zfv \$ nf]sn / c?0f - @ sf] nflu pko'Qm /f]Kg] ;do dflgof] . o; ;Fu} cf/=Pd=Pn= -\$ \div ! & sf] nflu r}q #) / kf]l;nf] ds}-! sf] nflu r}q @% pQmd /f]Kg] ;do 7x/fOof] . ;]G;]l6lel6 af6} s] yfxfkfOof] eg] olb r}q @% ut] /f]lkosf] ds}df kfgLsf] cefj gk/]sf] eP xfOla|8sf] pTkfbg c? hftsf ds}x? eGbf a9L -!*=@#Ü_ n] j[l4 x'g] lyof] . 5flgPsf c? hftx?sf] ;]G;]l6lel6 PgfnfOl;; ul/bf /fdk'/ sDkf]lh6sf] pTkfbg c? hftsf ds} eGbf a9L -^\$(# s]=hL= k|lt x]=_ kfOof] . o;} u/L @))^, @))& ;fn ds} pTkfbgsf] nflu pko'Qm jif{ df]8nsf] cg';f/ dfGg ;lsG5 clxn] cfP/ a9\bf] tfds|dn] ubf{ lxpFb] ds}df qsf/fTds k|efj k/]sf] kfOof] . olb clxn]sf] cj:vf eGbf @ l8u|L dfg a9]df ds}df !% k|ltzt pTkfbg 36\g ;Sg] tYo df]8nn] b]vfPsf] 5 / o;sf] c;/ xfOlj|8df a9L x'g] kfOof].

pk–k|f=8f= nfn k|;fb cdufO pd]z >]i7 d'Vo ;Nnfxsf/ n]vs

1 INTRODUCTION

1.1 Background

Maize (*Zea mays* L.) is the second most important staple food crops both in-terms of area and production after rice in Nepal. It has the highest yield potential over other cereals and thus known as 'the queen of cereals' (Singh, 2002). It is grown in about 906253 ha land with 206772 metric tons total production and 2.23 mt ha⁻¹ productivity (Agricultural Diary, 2069). Maize contributes 9.5% AGDP and 3.15% GDP (MoAD, 2012). Maize occupies about 28.32% of the total agricultural land cultivated, and shares about 23.89 % of the total cereal production in Nepal (MoAC, 2009/10). The overall demand for maize will be increased by 6-8% per annum largely for the next two decades as a result of increased demand for food in hills and feed in terai, inner terai and, this increased demand could only be met by increasing the productivity of maize per unit area of land (NMRP, 2009).

Rainfed farming means the cultivation of crops on relatively dry land that lacks easy access to irrigation and moisture requirement at any growth and development stages of crop. Rainfed farming area falls mainly in arid, semi-arid and dry sub-humid zones in the world but the Nepalese sub-tropical region is also rainfed. In Nepal, about 65% of the total arable land is under rainfed (Thapa, 1995). The variation in rainfall under rainfed zone especially during spring season feels long dry spell, early withdrawal and also increasing temperature caused stressful environment to plant growth, all of which strongly influence the productivity level of maize.

Climate change is another factor that is making stressful environment for maize production. Climate change refers to any change in climate over at least 30 years, whether due to natural variability or anthropogenic forces. The main cause of climate change is the increase in concentration of Green House Gases (GHG) such as carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) in the atmosphere mainly due to human activities such as fossil fuels utilization, conventional cultivation practices and change in land use patterns. The change in climate is indicated by increase in temperature, change in rainfall pattern etc. The temperature of Nepal is increasing by 0.06 °C per year (Shrestha *et al.*, 1999). Climate dynamics, particularly the projected increase in the variability of rainfall regimes, suggest that Nepalese agriculture is facing with immense challenges as seasonal drought and heat stress is increasing.

Numerous technological (e.g. cropping patterns, choice of proper sowing date, and shifts to drought-resistant varieties, crop modeling) and socio-economic (e.g. ownership of assets, access to services, and infrastructural support) factors will come into play in enhancing the current capacity of rainfed farmers to cope with climate change.

Optimum planting date is a cost-less tool to improve the yield of maize. Spring maize is normally planted in mid of February. Maize planted in earlier spring season is facilitated by favorable temperature, availability of reserved soil moisture of long winter for vegetative growth, but drought problem during reproductive period creates stressful environment to the crop. When maize planting date is shifted to late spring, higher temperature stress during major crop period will hinder plant growth and development. However, there will be plenty of soil moisture during reproductive stage due to monsoon rainfall which also could not be favorable to C_4 maize. Even though, rainfall will occur in post flowering period but excessive high temperature decreases crop yield by shortening of growth duration and other physiological factors associated with poor grain filling. That is why, optimum sowing date for healthy crop growth is an important task to tackle changing climate during spring season.

The development of improved germplasm to meet the needs of future generations in light of climate change and population growth is of the upmost importance (Easterling et al., 2007). Drought condition that often occurs in rainfed lower ecosystem seriously affects the growth and yield of maize. Most of the varieties released by National Agriculture Research Council are susceptible to drought. Even heat stress during summer season decreases crop yield with higher magnitude. To avoid high temperature and drought during post anthesis period, farmers like to cultivate short durational varieties. Farmer expects short durational variety to escape drought period and provide higher yield and net returns. However, they are still in dilemma, which varieties will provide greater yield under prevailing environment. So this research also focused on selection of proper variety for the particular location. Four varieties were chosen to determine the best one through research. Out of four varieties, Arun-2 and Local are short durational varieties. The major agroclimatic indices like temperature and solar radiation significantly affects the crop growth and development. The quantification of temperature and their application in predicting crop yield is a modern application in agricultural field. Environmental impact on agroclimatic indices such as heat use efficiencies and phenothermal index were studied to find there significant role in varietal selection. During both the winter and spring planting, 'Arun-2' has given more stable yield and heat use efficiency for the early and late (September 1 to November 1, and February 24 to March 4) plantings (Amgain, 2011). Remaining Poshilo Makai-1 and RML-4/17 are long durational but drought tolerant varieties. From several researches, it has also been reported that hybrids can give 20-50% more grain yield than the inbred variety (Gupta et al., 2010). However, the hybrid and improved cultivars of any crops are more sensitive to the environment of climatic variability than the local genotypes, and yield reduction is more on them (Amgain, 2011, Lamsal and Amgain, 2010, Bhusal et al., 2009).

With the advancement of the applied science, different types of the crop models have been evolved, among them; DSSAT ver. 4.5 is one which can help to investigate a range of issues from crop management (Jones *et al.*, 2003). Climate change simulation on growth and yield performance of various crop cultivars is other advantages provided in this crop simulation model. The CSM-CERES-Maize embedded in DSSAT model (version 4.0) has only been tested over a wide array of location except a very few locations in Nepal (Timsina, 1997, Sapkota et *al.*, 2008; Bhusal *et al.*, 2009) and found satisfactory, but not the version 4.5. Further testing of this version covers the sub-tropical climate of central Nepal and will be a highly valued scientific work as a climate resilient adaptive research for proper decision making especially with regards to spring season maize.

The present investigation was therefore designed to assess the productivity level of spring maize planted on staggered dates. Simultaneously, the simulation modeling was also done to assess the growth, phenology, yield of promising maize cultivars using CSM-CERES maize model with the following objectives.

1.2 Objectives

Broad objectives

• To increase the productivity of spring maize genotypes under rainfed upland condition of central-terai.

Specific objectives

- To find out the optimum planting dates for different maize genotypes grown under rainfed upland condition during spring.
- To estimate the effect of agro-climatic indices on various maize genotypes.
- To evaluate the CSM-CERES-Maize model for its ability to simulate agronomic management and climate change parameters on growth, phenology and yield of various maize genotypes.

2 LITERATURE REVIEWS

The materials/literatures reviewed from different sources have been placed in this heading.

2.1 Rainfed farming

Rainfed farming is a crop production in regions with annual rainfall more than 1150 mm, but excludes of irrigation from streams and underground sources. Sometimes it may include supplementary irrigation from dams or tanks fed from rainfall and associated runoff on particular landholdings. About 93% of farm land is rainfed in sub-Sahara Africa, 87% in Latin America, 67% in the Near East and North Africa, 65% in East Asia, and 58% in South Asia (FAO, 2002). Rainfed agriculture is practiced in 80% of the world's physical agricultural area and generates 62% of the world's staple food (FAOSTAT, 2005).

Nearly 20% of irrigated areas supply about 40 % of world's food demand. Irrigated areas are almost saturated with modern farming techniques. The gap between actual yield and potential yield of rainfed area is very high. In the future, rainfed areas are the only source to cope increasing demand of the increasing population. Historic trends show a growing yield gap between farmers' practices and farming systems that benefit from management advances (Wani *et al.*, 2003).

2.2 Status of rainfed maize production in Nepal

In Nepal, about 65% of the total arable land is under rainfed (Thapa, 1995). The rainfed farming plays an important role in Nepalese economy. Rainfed agriculture has always been an important part of the agriculture sector. Nearly half of all food grains are grown under rainfed conditions and hundreds of millions of poor rural people depend on rainfed agriculture as the primary source of their livelihoods.

Maize is considered as important cereal of Nepal. It is cultivated in 871387 ha (MoAC, 2011-2012). Out of this spring maize occupies 14.2 % area (MoAD, 2011). In terai and inner terai regions of Nepal, spring maize is cultivated in low-land with sufficient soil moisture remained after rice cultivation. While, late spring maize is cultivated in upland rainfed condition because lowland often gets submersed during rainy season. Majority of western part of Nawalparasi lacks irrigation facilities so spring maize in this area is totally based on rainfall. In terai and inner terai, Rice-wheat-maize and Maize-mustard cropping patterns are much popular.

2.3 Climate change in Nepal

According to the Intergovernmental Panel on Climate Change (IPCC), the mean global surface temperature increased by 0.74 °C during the 20th century. Since 1971, rates of land surface temperature have been increasing at the alarming rate of between 0.23 and 0.28 °C per decade. This continuing trend coupled with changes in rainfall patterns and greater frequencies of extreme weather events are likely to have adverse effects on the global population.

Nepal is no exception: it is a vulnerable country because of its unique and fragile mountain ecosystem. Nepal has been ranked fourth in a new global ranking of the most vulnerable countries in the world in the concern of climate change. The observed trends of rising temperature in Nepal is challenging the IPCC projections, as it seems that land areas will warm more rapidly than the global average. Associated with temperature change, monsoon precipitation patterns have also undergone changes, with decreasing rainy days and increasing high-intensity rainfall-extreme events resulting in intense and frequent water- induced disasters such as landslides, debris flows, and floods (Adhikari, 2004).

2.3.1 Changing temperature

According to Synnott (2012), there is a general agreement that average temperatures in Nepal increased at an annual rate of 0.06 °C between 1977 and 2000, with a 0.04 °C increment in the terai and 0.08 °C increment in the Himalayas. Warming patterns have been most pronounced at higher altitudes and more so during the winter months as opposed to the monsoon season. Warming has also been greater in the western half of the country than in the eastern half. Baidya *et al* (2008) found a general increasing trend in the extreme temperature events with a consistent higher magnitude in the mountains than in the plains.

2.3.2 Changing precipitation pattern

While there is evidence that more intense precipitation events have been occurring, there are currently no definite trends in precipitation or reliable projections for the future. This is largely due to lack of data from few functioning meteorological and hydrological stations scattered across the country. According to IPCC (2007), despite this significant dearth of data, a few general observations have been made: 1) The western half of Nepal is considerably drier than the eastern half; 2) regions that receives less average rainfall have shown a higher degree of warming; 3) the timing of monsoon when Nepal receives 75-80 percent of its annual rainfall, has become increasingly unpredictable Although the effects of rainfall variation tend to be site-specific, delayed onset of monsoon had made planting date much unpredictable and typically has an adverse impact on crop yields.

2.4 Climate requirement of maize

Maize is a warm weather plant. It grows from sea level to 3000 metre altitude. It can be grown under diverse conditions. It is grown in many parts of the country throughout the year. Winter season is the main growing season in terai parts of Nepal. Spring maize is planted at any time from mid-February to April. Maize requires considerable moisture and warmth temperature from germination to flowering. The most suitable temperature for germination is 21°C and for growth 32°C. Extremely high temperature and low humidity during flowering damage the foliage, desiccate the pollen and interfere with proper pollination, resulting in poor grain formation. Fifty to seventy-five centimeter of well distributed rain is conducive to proper growth of maize. Maize is very sensitive to stagnant water, particularly during its early stages of growth.

2.5 Effect of heat stress in spring maize

Heat stress can be defined as temperatures above a threshold level that results in irreversible damage to crop growth and development and is a function of intensity, duration and the rate of increase in temperature. Furthermore, different plant tissues and organs, and different developmental stages are affected by heat stress in different ways, depending on the susceptibility of the dominant metabolic processes that are active at the time of stress (Larkindale *et al.*, 2005). Accumulated or acute high temperatures can cause an array of morphological, anatomical, physiological and biochemical changes within maize.

By the end of this century, growing season temperatures will exceed the most extreme seasonal temperatures recorded in the past century (Battisti and Naylor, 2009). Elevated temperature negatively affects the seedling and vegetative stages of crop. During the autotrophic phase of germination, plant energy is directly affected by soil temperature (Stone, 2001). High temperature reduces both seedling percentage and growth (Weaich *et al.*, 1996). In maize seedling growth is maximized at a soil temperature of 26 °C and above this temperature, root and shoot mass both decline by 10% for each degree increase until 35 °C when growth is severely retarded (Walker, 1969). Reduced seedling growth has been suggested to be associated with poor reserve mobilization, with reduced protein synthesis observed in seedlings grown under elevated temperatures (Riley, 1981).

Seedlings growing in high soil temperatures are likely to suffer further damage as the associated slower growth rate, delays canopy closure, consequently reducing soil shading. Above 35 °C, maize leaf elongation rate, leaf area, shoot biomass and photosynthetic CO₂ assimilation rate decreases (Watt, 1972). Elongation of the first internode and overall shoot growth of maize has been suggested as the most sensitive processes of the vegetative stage to high temperatures (Weaich *et al.*, 1996).

High temperature is also detrimental to reproductive organs. Successful grain set in maize requires the production of viable pollen, interception of the pollen by receptive silks, transmission of the male gamete to the egg cell, initiation and maintenance of the embryo and endosperm development (Schoper *et al.*, 1987). Pollen produced under high temperature has reduced viability. Pollen production and/or viability have been highlighted as major factors responsible for reduced fertilization under high temperatures. Additionally, high temperature is responsible for reduced water potential in pollen, quantity of the pollen shed and pollen tube germination.

Maize kernel weight is the product of the rate and duration of grain filling, both of which are affected by temperature. High temperature during this period is associated with a reduction in the duration of grain filling (Badu-Apraku *et al.*, 1983; Hunter *et al.*, 1977; Muchow, 1990).

Heat stress during grain filling reduces endosperm starch content, the primary constituent of kernels (Singletary *et al.*, 1994). Cheihk and Jones (1994) studied the effect of heat stress (35°C) on sink activity of maize kernels in vitro. Heat stress was not associated with reduced carbon supply to the kernel, suggesting that the effect of heat stress was related to changes in carbon utilization and partitioning. Thus, heat stress did not reduce sink activity by reducing kernel uptake of sugars but by adversely affecting the conversion of sugars to storage products. High temperature reduces the number and/or size

of endosperm cells formed thereby reducing sink capacity (Jones *et al.*, 1984). During this stage heat stress affects cell division, sugar metabolism and starch biosynthesis, reducing subsequent dry matter accumulation within kernels (Commuri and Jones, 2001; Engelen-Eigles *et al.*, 2000; Monjardino *et al.*, 2005).

2.6 Effect of drought in spring maize

2.6.1 Drought effects during vegetative growth

Pre-anthesis stress reduces leaf and stem elongation through reduced cell expansion and extension (Kiziloglu *et al.*, 2009), decreasing plant height (Traore *et al.*, 2000) and LA (Cakir, 2004). Short internodes and reduced leaf area limit assimilate storage for grain filling causing decreased kernel weight (Moser *et al.*, 2006). Reduced leaf numbers have also been observed under severe drought occurring prior to tassel initiation (Kiziloglu *et al.*, 2009).

Under typical drought situations, the primary limitation to maize photosynthesis is reduced leaf internal CO₂ concentration which is caused by stomata closure as leaves attempt to minimize water loss through evaporation (Bruce *et al.*, 2002; Saccardy *et al.*, 1996; Wolfe *et al.*, 1988; Xianshi *et al.*, 1998), reducing photosynthesis due to lower interception and conversion of PAR into biomass (Moser *et al.*, 2006; Otegui *et al.*, 1995; Welcker *et al.*, 2007).

Pre-anthesis drought affects kernel number and kernel weight through canopy size reduction (Pandey *et al.*, 2000). In some situations, harvest index (HI) can increase with pre-anthesis stress (Lorens *et al.*, 1987; Moser *et al.*, 2006). Most of this could be due to reduced vegetative growth and shorter plants, followed by relatively normal ear growth.

2.6.2 Drought effect during flowering

Sensitivity of crops to drought is dependent on stage of development (Doorenbos and Kassam, 1979) and is the highest during and just after flowering (Banziger *et al.*, 2000;
Grant *et al.*, 1989). Severe stress during flowering results in kernel abortion and significant reduction in kernel set, causing yield losses of 50-100% (Bolanos and Edmeades, 1993; Grant *et al.*, 1989; Pandey *et al.*, 2000). This supports findings by Doorenbos and Kassam (1979) who reported that maize was about 3-4 times more prone to drought if water stress occurred during anthesis rather than during vegetative growth or grain filling, with much less yield loss encounter if stress occurred during ripening stages. The most drought susceptible period is considered to be approximately 2 weeks either side of anthesis (Boomsma and Vyn, 2008; Shaw, 1974; Schussler and Westgate, 1995). Kernel number determination occurs during this period (Jamieson *et al.*, 1995). Cakir (2004) observed a 20% reduction in KN when water stress occurred at tasseling, vs 32- 35% if stress coincided with the tasseling to ear formation stage. Since maize grain yield is highly correlated with KN under drought stress (Bolanos and Edmeades, 1996), yield depression under severe stress at flowering is not surprising.

Water stress immediately prior to silking usually slows ear growth more rapidly than tasseling growth, thereby increasing anthesis to silking interval (Banziger *et al.*, 2000; Campos *et al.*,2004; Farre and Faci, 2006). Delays in silking emergence of up to 8 day under drought conditions have thus been documented (Hall *et al.*, 1981., 1981; Herrero and Johnson, 1981; Grant *et al.*, 1989). This significantly reduces chances of successful pollinations since pollen grains only have a limited lifespan (Bassetti and Westgate, 1994). Longer ASI is negatively correlated with grain yield (Bolanos and Edmeades., 1996) because of a reduction of kernel number caused by loss of silk receptivity, decline in fertilization and an increase in embryo abortion (Westgate, 1997;Banziger *et al.*, 2000;Bruce *et al.*, 2002). The delay in silking results in decreased male-female flowering synchrony or increased anthesis-silking interval (ASI). Early field experiments reported 82

% reduction in grain yield as ASI increased from 0 to 28 days (Du Plessis and Dijkhuis, 1967, Edmeades *et al.*, 1993).

2.6.3 Drought effect in grain filling stage

Drought negatively affects all stages of maize growth and production, the reproductive stage, particularly between tassel emergence and early grain-filling, is the most sensitive to drought stress. Drought stress during this period results in a significant reduction in grain yield, associated with a reduction in kernel size (Bolanos and Edmeades, 1993). Leaf growth, final size and orientation, and growing kernels are the main determinants of source and silk strengths through their respective relations with light interception and yield (Welcker *et al.*, 2007). Reduced photosynthetic rate during grain filling decreases source flux, thus minimizing assimilate flux to the developing ear.

During grain filling, water stress influences KW differently, depending on growth stage (Bajwa *et al.*, 1987; Roy and Tripathi., 1987). Stress within the first 3-4 weeks of grain filling leads to kernel abortion while stress in last 3-4 weeks leads to shriveled grain and accelerated leaf senescence (Edmeades *et al.*, 2000).

2.6.4 Effect of solar radiation

Provided all factors are non-limiting, accumulative IPAR is strongly related to total biomass accumulation (Edwards *et al.*, 2005) and grain yield (Wilson *et al.*, 1995). Both IPAR and RUE determine assimilate production rate, which is critical for growth, kernel set and grain filling (Bonhomme, 2000).

Tollenaar *et al.* (1992) found that newer maize hybrids with improved stress tolerance produced more kernels per plant and per unit area under stressful condition than the older counterparts. This was attributed to high crop growth rates (CGR) during silking improved partitioning of assimilate to the developing ear, and a greater tendency to

prolificacy. Newer hybrids also have improved leaf-stay-green characteristics which increase cumulative IPAR during grain filling (Duvick, 1992; Rajcan and Tollenaar, 1999). The sunny condition that generates less LA per plant prolongs plant-stay-green ,extend crop duration and thus, reduced the degree of remobilization from the stem. The cool temperature slow development rate, consequently increasing photo-thermal quotient, which is the ratio of cumulative IPAR to cumulative TT. Higher PTQs are therefore associated with greater yields. Plants are also shorter in cool conditions, thus reducing lodging susceptibility.

Solar radiation provides the energy for the processes that drive photosynthesis, affecting carbohydrate partitioning and biomass growth of the individual plant components (Boote and Loomis, 1991).

Even though CGR is directly proportional to IPAR, grain filling rate is not greatly affected by day to day variation in photosynthesis (Cirilo and Andrade, 1996). Periodic variation in assimilate supply can be cushioned through remobilization of soluble carbohydrate from stalks (Daynard *et al.*, 1969). Remobilization should however be considered a short-term supplier of photosynthesis (Banziger *et al.*, 2000). Prolonged remobilization may exhaust stem reserves, shortening grain filling and inducing lodging (Cirilo and Andrade, 1996).

2.7 Spring maize in Nepal

Spring maize is the dominant crop in upland terai condition in the country, usually followed by pulse, or mustard. Summer, spring and winter maize occupies area of 73.9%, 14.2% and 11.9% respectively. (MoAD, 2011).Spring maize has been gaining momentum in the khet (low) and bari (up) land of central terai, inner-terai and in mid-hill as rice-maize and maize-mustard systems since the earlier time, respectively.

It is grown with onsets of moderately warm temperature during February- March and ends with hot and dry periods in May, which is also accompanied by occasional and erratic west monsoon at the beginning and some initial shores of East monsoon rains towards the end in May. The maximum temperature during the spring reaches in Nepal up to 40 ^oC in May (Carson, 1993; Thapa and Dangol, 1988). The drought, excess of monsoon rains (flood and water logging), soil erosion and landslide, soil fertility declining, plant pests (insects, weeds, diseases etc.) problems, limited the choice of crops grown, climatic misfortune (high temperature, speedy wind, hot dry wind, hail, frost etc.), low rate of inputs and poor input management, poor economy of farmers, etc are encountered in spring grown under rainfed condition of Nepal.

2.8 Effect of climate change in spring maize production

Maize production in rainfed area is based on climatic factors. For spring maize, rainfall is the pre-dominant factor that is governing its grain production. Maize is planted during February when soil moisture is favorable for germination of maize seed. However, there is high chance of post spring drought problem if rainfall doesn't occur timely. It has even caused total crop failure and highly reducing spring maize production. But changing climate has brought unpredictable rainfall pattern. Traditional rainfall in Nepal during Jestha and Ashar (mid-July) has shifted in Shrawan and Bhadra (Pokharel, 2011). This rainfall exhibits high coefficient of variation particularly in dry-terai region. Skewed distribution has now become more common with reduction on number of rainy days. Aberrations in monsoon which include delay in onset, long dry spells and early withdrawal, all of which affect the crops, strongly influence the productivity levels (Lal, 2001). Higher temperatures, increased evapo-transpiration and decreased winter precipitation may bring about more droughts in Nepal (Alam and Regmi, 2004). Increasing extreme temperature

and drought problems has highly reduced spring maize productivity and production level in rainfed areas.

2.9 Climate change adaptation in maize

As mentioned by IPCC's recent assessment, agricultural production in South Asia might fall by 30% at the end of 2050 if the existing rate of increasing temperature is not combat. Hence, to deal with such effect of climate change on agriculture along with maize production, there are some adoptive options like development and release of site specific heat tolerant cultivars, adjusting of sowing/ planting time and choice of cultivars with a growth duration allowing avoidance of peak stress periods are some of the adoptive measures against effect of global warming.

2.10 Adoption of crop management practices

Late spring maize production is very risky. Climate change has added even more risk, challenging the traditional maize production system. Lately planted spring maize is exposed to extreme heat. Heat stress is increasing even more as temperature is increasing due to global warming and shifting of rainfall pattern has added more droughts.

Of all the management aspects of growing a maize crop (cultivar selection, planting density, amount and timing of fertilizer etc.), planting date is probably the most subject to variation because of the great differences in weather at planting time between seasons and within range of climates (Otegui *et al*, 1995). Adjusting of planting dates and choosing location and climate specific cultivars with different growth duration and/or improving crop rotation can be easily adopted by resource poor farmers. Short duration cultivars are suitable for time adjustment (Balasubramanian *et al.*, 2007). Choice of correct planting dates helps to prevent sensitive stages of crop such as flowering against adverse situations such as intense rainfall, extreme temperatures and drought etc.

2.11 Effect of planting date on grain yield

Shepard *et al.* (1991) reported that early planting date could contribute significantly to higher maize yields. It also allows harvesting earlier in the season when conditions are usually better in field and losses can be minimized (Hicks *et al.*, 1993).

According to Aldrich *et al.* (1975) yield reduced in late plantings could be attributed to short growing duration, insect and disease pressure, heat and moisture stress during pollination. These results were in agreement with those by Otegui and Melon (1997), who reported that delayed planting are generally accompanied by increased temperatures during the growing season, which accelerate crop development and decrease accumulated solar radiation, resulting in less biomass production, kernel set and grain yield.

Khan *et al.* (2002) reported that grain yield of maize decreased with delay in sowing dates. Crops planted on 2nd May recorded maximum grain yield followed by crops planted on 9th May while minimum grain yield was observed in crops sown on 13th June. Maximum grain yield with early sowing might be due to prolonged growing period, more number of grains row⁻¹ and high grain weight with early planting.

2.12 Effect of planting date on kernel number

Variation in planting date is commonly found to have an influence upon the number of grains ear⁻¹ (Harris, 1984). Otegni and Melon (1997) reported that planting dates affects the kernel set and flower synchrony within ear of maize. Cirilo and Andrade (1994) suggested that kernel abortion rather than a morphogenetic process was the dominant factor determining the final kernel set.

Reduced kernels ear⁻¹ are the most consistent, irreversible component of yield reduction under drought stress (Anderson *et al.*, 2004). The number of florets that may become kernels cannot exceed exposed silking number and declines from this potential as silks lose receptivity and senesce with age (Bassetti and Westgate, 1993). Hybrids with faster silk growth rates have more silks available for pollination at the beginning of flowering. However, when environmental conditions are below optimum kernel number may be limited by asynchrony (pollen is not shed when silks are exposed or receptive) (Anderson *et al.*, 2004), loss of silk receptivity (Silk is no longer functional to support pollen tube growth) (Bassetti and Westgate, 1993) or developmental failure of the ovary. Such limitations to Kernel number may have drastic impacts on grain or seed production profitability and may be influenced by silk characteristic for a given hybrid or inbred (Anderson *et al.*, 2004).

2.13 Effect of planting date on kernel mass

Higher temperature during crop growth period accelerates the development and phenological characters of maize. So, the crops maturing faster have lower dry mass at anthesis. This kind of tendency for later planted crops gives lighter grains. Thus in most findings, grain mass is either unaffected or reduced by later planting by upto 10 percent (Taylor and Blackett, 1982). Maddonni (2004) supports that the individual grain mass for a given cultivar is a relatively stable character. However, when delay in the start of grain filling by a few days coincides with a rapid deterioration in the environment, much larger effects can be anticipated. In conclusion, grain yield generally declines with delay in spring sowing, principally as a consequence of decreases in ear number, but also in some cases because of small decreases in individual grain mass. Maddonni *et al.* (2004) reported that kernel mass is conditioned by post-silking crop growth, with more dependence on reserve mobilization in hybrid with small kernels and large kernel number than in hybrids with fewer kernels of large size. Therefore reduction of solar radiation reduces final kernel mass through reductions in biomass production per kernel.

2.14 Effect of planting date on growth and dry matter yield

Variation in maize planting date modifies the radiation and thermal conditions which are supposed to be important requirement for crop growth and development. The amount of incident radiation and the proportion of this radiation that is intercepted by the crop directly determine crop growth rate (Cirilo and Andrade, 1994). Cirilo and Andrade (1994) reported that delays in planting date determined important reductions in the amount of incident radiation accumulated from emergence to silking, because it hastened development. Inversely, high temperature during early growth of late plantings hastened leaf area development as shown by their high early percentage photosynthetic active radiation (PAR) interception values. Hesketh and Warrington (1989) also reported similar temperature effects on leaf appearance rate and on leaf expansion in maize. Thus higher temperature retard crop growth and development.

2.15 Stress tolerant maize cultivars in Nepal

Gurung *et al* (2010) conducted an experiment at National Maize Research Program (NMRP) farm, Rampur, Chitwan during the summer season of 2010 to identify and select the heat tolerant maize genotypes from fourty four genotypes under investigation. Observations on days to tasseling and silking, plant height, ear height, ear length, ear diameter, plant aspect, ear aspect, unfilled ear, non grain ear, stem borer, wilt and grain yield were taken. Among the tested genotypes, Manakamana-4, Upahar, TLBRSSO7F16 and BGBY POP performed equally better in all tested locations and their grain yields were found higher, hence they were promising genotypes under heat stress growing conditions based on findings of this research.

Gurung *et al* (2011-2014) conducted a project entitled as "Development of high yielding and drought tolerant OPVs suitable for mid hills of Nepal" at National Maize Research Program, Rampur. They found genotypes namely, S99TLYQ-A, Synthetic-B,

Rampur S03F08, Gaurav, TLBR07F16, Upahar, S00TLYQ-AB, OEHPW, RPOP-1, RPOP-4, Manakamana-4, RPOP-2, GLSYW, SOOTLYQ-B, Tereai Pool Yellow, Arun-2, OBATANPA, Khumal Yellow/Pool-17 and RPOP-3 respectively were found promising drought tolerant genotypes for hills.

The need for new alternatives for a sustainable agriculture (Khush, 1999), such as drought-tolerant plants, will provide a practical solution to alleviate the problem of water limitation. Most of the alternatives are based either on accelerating the selection of natural varieties or/ and inserting genes from plant varieties or species with capacity to provide drought tolerance.

2.16 Criteria for selection of suitable maize cultivar

The traits important for performance under drought and/or heat stress include enhanced root density and depth, transpiration efficiency, phenology and duration, rapid establishment, early vigor, lower stomatal conductance, slow wilting, leaf angle, leaf reflectance, delayed leaf senescence, accumulation and mobilization of carbohydrates and nitrogen from leaf and stem to grain, osmotic adjustment, and heat shock proteins and dehydrins.

Gurung *et al* (2011-2014) conducted a project entitled as "Development of high yielding and drought tolerant OPVs suitable for mid hills of Nepal" at National Maize Research Program, Rampur. They concluded grain yield, short anthesis and silking interval and stay-green are major indices for identification of drought tolerant genotypes.

Shorter-duration cultivars escape drought because they complete their life-cycle before the occurrence of drought, whereas long-duration cultivars have greater chances of being exposed to severe drought or heat stress, particularly, during the later stages of crop development. Since maize production in developing countries is extensively dependent on rainfed agriculture, vulnerability due to erratic rainfall and weather variability may be combated using extra-early hybrids (Oseni and Masarirambi, 2011). Early maturing varieties offer flexibility in planting dates which enables (1) multiple planting in a season to spread the risk of losing a single crop to mid season droughts (2) late planting during delayed onset of rainfall and (3) avoidance of known terminal drought during the cropping season (Pswarayi and Vivek, 2007).

One of the important components of tolerance to drought is enhanced soil moisture capture, which is possible by increased exploration of soil by the roots. Deeper roots will enable water absorption from greater depth. Cultivars with deeper root systems, when compared with shallow root systems are generally more tolerant to drought stress during critical stages of crop development. Extensive root growth and distribution of roots will help explore larger soil volumes and thus may provide plants greater access to water and nutrients under drought conditions. Plants will transpire more to keep the canopy cool; this cooling is only effective in the presence of water. Therefore, improved root systems will enable plants to transpire and keep the canopy cooler for longer periods of time during heat stress condition.

Drought studies have focused on the identification of the genetic basis of yield, yield components and secondary traits including increased flowering synchrony (ASI), root architecture, growth maintenance and stay-green (Ribaut *et al.*, 2009).

Stay-green genotypes retain chlorophyll in their leaves and maintain the ability to carry out photosynthesis longer than the senescent types, and are often shown to have a yield benefit (Borrell *et al.*, 2001; Jordan *et al.*, 2003). The stay-green trait and remobilization of stem carbohydrate reserves to grain have been explored under heat (Fokar *et al.*, 1998) and drought stress (Palta *et al.*, 1994; Yang *et al.*, 2000).

With respect to the importance of phenology to heat stress, Tewolde *et al.* (2006) identified and quantified the characteristics of wheat cultivars adapted to production

systems with risks of heat stress during the post-heading period. They conclude that earlyheading cultivars out-performed later-heading cultivars because of two distinct advantages: the early-heading cultivars had a longer post-heading period and, therefore, a longer grainfilling period than the later-heading cultivars. In addition, early-heading cultivars would have completed a greater fraction of the grain-filling duration earlier in the season when air temperatures were lower and generally more favorable. The advantage of earlier- heading cultivar was also manifested in the amount of green leaves retained to anthesis. Earlierheading cultivars produced fewer total leaves per tiller but retained more green leaves and lost fewer leaves to senescence at anthesis than later-heading cultivars. The results suggest that early heading is an important and effective single trait defining wheat cultivars adapted to production systems prone to high temperature stress during post-flowering period (CIAT, 2001; CIMMYT, 2003).

2.17 Simulation modeling

Simulation models are designed for the purpose of imitating the behavior of a system. They are mechanistic and in the majority of cases they are deterministic. Since they are designed to mimic the system at short time intervals (daily time-step), the aspect of variability related to daily change in weather and soil conditions is integrated. The short simulation time-step demands that a large amount of input data (climate parameters, soil characteristics and crop parameters) be available for the model to run. These models usually offer the possibility of specifying management options and they can be used to investigate a wide range of management strategies at low costs.

Management decisions regarding cultural practices and inputs have a major impact on yield. Simulation models, that allow the specification of management options, offer a relatively inexpensive means of evaluating a large number of strategies that would rapidly become too expensive if the traditional experimentation approach were to be adopted. Many publications are available describing the use of simulation models with respect to cultural management (planting and harvest date, irrigation, spacing, selection of variety type) and input application (water and fertilizer).

Crop simulation models are being more widely used over the past 20-30 years by scientists to hypothesize ways to improve agricultural production under seasonal and daily variability in weather. Model capture much of what we know about crop growth responses to factors of temperature, solar radiation, rainfall, soil traits and crop management (Boote *et al.*, 1998). Increased levels of CO₂ and other greenhouse gases are contributing to global warming with associated changes in rainfall pattern. Assessing the effects of these changes on crop yield is important at the producer as well as at the government level for planning purposes. Despite objections raised by Passioura (1996), the simulation approach remains the best tool for quantifying these effects. In Mauritius, the APSIM-Sugarcane model was used to assess the vulnerability of the sugar industry to climate change and to quantify the impact of a limited range of mitigation possibilities (e.g., irrigation adoption, variety type and harvest date) on cane and sucrose yields (Cheeroo-Nayamuth and Nayamuth, 2000). The CROPGRO, CERES and EPIC models, AUSCANE as well as many others have been used to quantify yield change resulting from global climate change.

2.18 Decision support system for agro-technology transfer (DSSAT 4.5) crop simulation model (CSM)

The Decision Support System for Agro technology Transfer (DSSAT) Version 4.5 is a software application program that simulates growth, development and yield as a function of the soil-plant-atmosphere dynamics. It is a computerized system to help resource planners and farmers make decisions as they seek solutions to specific agricultural problems. It comprises crop simulation models for over 28 crops. For DSSAT v4.5 to be functional it is supported by data base management programs for soil, weather, and crop management and experimental data, and by utilities and application programs. DSSAT v4.5 have been used for more than 20 years by researchers, educators, consultants, extension agents, growers, and policy and decision makers in over 100 countries worldwide. DASSAT was developed by IBSNAT. It was first released (v 2.1) in 1989; additional releases were made in 1994 (v 3.0) (Tsuji *et al.*, 1994), 1998 (v3.5) (Hoogenboom *et al.*, 1999) and 2002 (v 4.0).

These simulations are conducted at a daily step and, in some cases, at an hourly time step depending on the process and the crop model. At the end of the day the plant and soil water, nitrogen and carbon balances are updated, as well as the crop's vegetative and reproductive development stage. DSSAT integrates the effects of soil, crop phenotype, weather and management options, and allows users to ask "what if" questions by conducting virtual simulation experiments on a desktop computer in minutes which would consume a significant part of an agronomist's career if conducted as real experiments. DSSAT v4.5 includes improved application programs for seasonal, spatial, sequence and crop rotation analyses that assess the economic risks and environmental impacts associated with irrigation, fertilizer and nutrient management, climate variability, climate change, soil carbon sequestration, and precision management.

DSSAT also provides for evaluation of crop model outputs with experimental data, thus allowing users to compare simulated outcomes with observed results. This is critical prior to any application of a crop model, especially if real-world decisions or recommendations are based on modeled results. Crop model evaluation is accomplished by inputting the user's minimum data, running the model, and comparing outputs with observed data. By simulating probable outcomes of crop management strategies, DSSAT offers users information with which to rapidly appraise new crops, products, and practices for adoption. The following data set is required (Jones et al., 1998) to run the model

- Weather: Latitude and longitude, daily solar radiation, Maximum and minimum air temperature and rainfall.
- Soil: Upper and lower horizon depths, texture, bulk density, organic carbon, pH and aluminum saturation.
- Management: Planting date, dates when soil conditions were measured prior to planting, planting density, row spacing, planting depth, crop variety, irrigation and fertilizer practices.

2.19 CERES-maize model

CERES- maize model is a process-based, comprehensive, deterministic simulation model, designed to simulate the effects of cultivar, planting density, weather, soil, water and in one of the version, nitrogen on crop growth, development and yield (Jones and Kiniry, 1986). This model is available as part of the DSSAT suite of the crop models designed to estimate production, resource use and risks associated with crop production practices (Tsuji *et al.*, 1994; Jones *et al.*, 1998).

2.19.1 Improvement of crop management practices

To raise yields and/or increase resource-use efficiency identification of low yields causing factors as well as improvement in crop management would be required. Crop models can be used strategically to evaluate management options and, in real time, to guide decision making. Locally validated CSMs have been used in numerous instances to develop improved crop management strategies for irrigation (Dogan et al., 2006; Hook, 1994), nitrogen management (Miao *et al.*, 2006; Thorp *et al.*, 2006), seedling dates (Carberry *et al.*, 1989; Saseendran *et al.*, 2005), and site-specific management (Fraisse *et al.*, 2001). Models have also been used to develop cultivar performance predictability when combined with geographic information systems (Loffler *et al.*, 2005).

2.19.2 Impact assessment of climatic variation

Schultze *et al.* (1996) used CERES-Maize to evaluate the impact of climate change in Africa. After employing different climate scenarios for the 21^{st} centuary, they found that the CO₂ enrichment effect counteracted the relatively modest changes in temperature and precipitation. Studies concerned the effect of climate change and variability showed that the maize yields from CERES-Maize are sensitive to increased temperature and decreased precipitation eg. Maytin *et al* (1995) for Venezuela, Jinghua and Erda (1996) for China , Brown and Rosenberg (1997) for Central US. A negative correlation between maize yields and radiation over Europe was also reported by Wolf and Van Diepen (1995). Wolf (2002) considered a scenario with increased amounts of CO₂ and showed that yields increased in proportion to other variable changes such as solar radiation and temperature.

A.L, du Pisani used CERES-Maize as a drought prediction tool. The model is being used to assess drought impacts on maize at an early stage so that policy makers can have an objective measure to declare drought-stricken areas. To assess the impact of early season weather on crop yields, the model was run with actual weather data up to a given date. Historic data were used for the remainder of the growing season. Excellent correlations were found between yield predictions and actual yields.

3 MATERIALS AND METHOD

Materials and methods planned and executed during the study has been described in detail under different sub-headings are given below.

3.1 Description of the field experiment

3.1.1 Location and cropping history

A field experiment was conducted at Shivamandir VDC-2 of Nawalparasi district on maize (*Zea mays* L.) during late spring (April to August) season, 2013. The area is located at 27^{0} 66' N latitude and 84^{0} 13' E longitude with an elevation of 220 M above mean sea level. Millet- maize is the main cropping pattern in this area from last five years. However, maize is considered as suitable crop during spring.

Figure 1. Map of Nawalparasi district showing research site (Shivamandir VDC)

3.1.2 Weather condition during experimental period

The experimental site lies in the sub-tropical humid climatic belt of Nepal. The area have sub-humid type of weather condition with cool winter, hot summer and distinct rainy season with average total annual rainfall of about 2332.8 mm (DHM, 2012). It is characterized by three distinct seasons: rainy season (June to October), cool winter (November to February) and hot spring (March to May). The meteorological data of a cropping season was obtained from the Meteorological station located at Dumkauli, Nawalparasi which is at 10 km to the east from research location.

Figure 2. Average weather records during research period (10 days interval) at Shivamandir-2, Nawalparasi, 2013

The temperature during experimental period was hyper thermic. The highest maximum temperature was recorded during May (monthly average = 34.12 ⁰C). After rainfall started from May, maximum temperature decreased slightly; however, minimum temperature was found increasing constantly and dropped slightly after July only. The highest minimum temperature was recorded during July (monthly average = 26.05 ⁰C). Total rainfall received during research period (7th April to 27th August) was 2789.1 mm.

The brighter sunshine hour was recorded at the initial stages of maize planting during April-May, which drastically reduced in June-July due to initiation of monsoon.

3.1.3 Soil sampling and analysis

Soil of study site were collected from four different depth viz 0-20 cm, 20-40 cm, 40-60 cm and 60-80 cm and their mechanical, physical and chemical properties were analyzed in soil laboratory of Soil Science Divisions of NARC, Khumaltar.

3.1.3.1 Mechanical analysis

The collected soil samples were analyzed by hydrometer method (Day, 1965) for soil texture. Sandy soil was found in all classified soil depths.

Table 1. Mechanical analysis of soil of experimental plot at Shivamandir-2, Nawalparasi during 2013

Soil depth (cm)	Clay (%)	Silt (%)	Textural type
0-20	6.1	4.9	Sandy soil
20-40	5.3	5.7	Sandy soil
40-60	5.8	5.1	Sandy soil
60-80	5.2	5	Sandy soil

3.1.3.2 Physical analysis

The highest and the lowest field measured water content of soil after it had been thoroughly wetted and allowed to drain until drainage become practically negligible is reflected by the drained upper limit and drained lower limit values. The value of soil moisture content at saturation, DUL and DLL was found decreasing with soil depth. The soil was found to be more compact under increasing soil depths and found the highest values of bulk densities at higher soil depth.

Soil depth (cm)	Drain upper limit (DUL) in bars	Drain lower limit (DLL) in bar	Soil moisture content at saturation in bar	Bulk density (g cm ⁻³)
0-20	0.338	0.183	0.433	1.35
20-40	0.336	0.178	0.432	1.35
40-60	0.306	0.164	0.417	1.40
60-80	0.287	0.153	0.37	1.53

Table 2. Physical properties of soil of experimental plot at shivamandir-2, Nawalparasi

	$n_1 n_1$
during 2	013

3.1.3.3 Chemical analysis

The soil of research site was found to be slightly acidic in nature. With the increment in the soil depth, the pH was found to be increased and last depth was found slightly basic. Likewise, the total nitrogen, available phosphorous and available potash in the experimental plot was found very high. Similarly, organic carbon (%) was found high to low and decreasing in order of soil depth. The chemical values of soil are presented in Table 3. Analysis of soil total nitrogen, phosphorous and potassium were done by using Kjeldhal distillation unit (Bremner, 1965), modified Olsen method (Watanabe and Olsen, 1965) and Neutral Ammonium Acetate method using Flame Photometer (Jackson, 1973), respectively. Similarly, soil pH and organic matter were analyzed through Blackman Glass Electrode pH meter (1:2.5 soil water suspension) (Wright, 1939) and Walkley and Blacks' titration method (1934) respectively.

Table 3. Chemical properties of soil of experimental plot during 2013 at Shivamandir-2,

Soil depth	Soil pH	NH4 ⁺ N (ppm)	NO ₃ -N (ppm)	Total N (%)	Available P2O5	Available k2O	Organic carbon
					(Kgha ⁻¹)	(Kgha ⁻¹)	(OC%)
0-20	6.2	8	15	3.5	58.0	132.5	3.1
20-40	6.3	6	18	3	48.0	123.5	1.4
40-60	6.6	5.7	19.5	2.7	46.0	120.0	1.5
60-80	7.4	5	21	2.5	40.0	117.0	0.4

Nawalparasi

3.2 Experimental details

3.2.1 Field layout for experiment

The experiment was conducted in two factorial Randomized Complete Block design (RCBD) consisting of 12 different treatments and each treatments was replicated thrice. Total area required for field to the layout was 799 m². It contained 36 plots. Plots were one meter apart. Each plot size was designed to maintain its 3 m width and 5 m length. Each plot contained 9 rows of maize in 3 m length. Crop geometry was 60 cm x 25 cm; row to row and plant to plant distance respectively. By this design, there were 12 plants per row, 108 plants per plot and 3888 plants in whole field. Out of 9 rows, two rows from outer periphery were considered as boarder rows, three rows for each net plot and destructive plot were allocated. Remaining one row from the middle, which separated destructive and net plot was selected as inter row.

Figure 3. Layout of experimental field

Figure 4. Layout of individual plot

3.2.2 Treatment details

Factor 1 (Sowing dates)

$$\begin{split} D_1 &= 7^{th} \text{ April} \\ D_2 &= 22^{nd} \text{ April} \\ D_3 &= 7^{th} \text{ May} \end{split}$$

Factor 2 (Varieties)

V₁= Local maize V₂= Poshilo makai-1 (QPM)

V₃= RML-4/17 (Hybrid)

 $V_4 = Arun-2$

3.3 Description of tested maize cultivars

3.3.1 Local cultivar

This cultivar is also called Tharu makai by villagers in Shivamandir area. It is a dwarf and short durational variety. Yield potential was very low about 2.0 t ha⁻¹. It's kernel

was pale yellow, small in size. Test weight was around 185 g and very susceptible to lodging.

3.3.2 Poshilo makai-1

It is normal season crop released in 2008 for the domain mid hill. The source of variety is CIMMYT (Mexico). Percentage includes S99 TLWQ-HG-"AB". Variety is long durational with growth period of 140-145 days. Plant height is 210 cm. Yield potential of around 5.6 t ha⁻¹. This maize has white kernel which have doubled amount of Lysine and Tryptophan as compared to normal maize. The studies indicated that the QPM protein contains, in general, 55% more tryptophan, 30% more lysine and 38% less leucine than that of normal maize (Paes *et al.*, 1995). Several researchers later demonstrated the superior protein quality and its digestibility of QPM over normal maize (Bressani 1995, Graham *et al.*, 1980, Paes *et al.*, 1995).

3.3.3 RML-4/17

RML-4/17 is F1 of RML-4 and RML-17 cross. A coordinated varietal trail on hybrid was conducted at NMRP, Rampur in winter season of 2009/2010 to see their grain yield and other agronomic traits. At that time, plant height was recorded 208 cm. Ear height was 110 cm. Similarly, no of ears ha⁻¹ was reported 48889. Grain yield of RML-4/17 was 7158 kg ha⁻¹.

3.3.4 Arun-2

Arun-2 introduced in 1976 was released in 1982 for low and mid-hill region as an early maturing variety. It was subsequently improved for earliness and uniform plant type through few cycles of mass and half-sib selection at Rampur (Mishra, 1982). It is derived from percentage Uncac 242 X Phil.DMr (Sub-tropical) = Amarilo 59 (temperate crop) and generally matures in 90 days. This variety is recommended for terai, inner terai and the hills (NMRP, 2000). Under monoculture conditions, short duration variety Arun-2 did

better under high plant population (90 thousand ha⁻¹) with spacing of 50 X 25 cm⁻² (Sen and Sthapit,1982). This genotype matured within 101 days during summer conditions even in the mid hills, Dailekh district (Koirala *et al.*, 2000). Arun-2 became very popular among farmers within a short span of time as it fits well into diverse type of cropping systems (Gauchan and Lal, 1990). The recommended package of practices for Arun-2 variety possess 46200 plant population ha⁻¹, 41100 numbers of ear ha⁻¹ and 3.9 t ha⁻¹ of yield during winter season under Rampur condition (Rijal *et al.*, 2000).

3.4 Cultural practices

3.4.1 Land preparation

Two to three cross ploughing of the millet harvested land was done before a week of planting with the help of tractor driven Mould Board Plough to make the soil loose and friable. After 4 days, the field was re-ploughed twice with tractor drawn harrow-spike to prepare fine seed-bed. However for second and third sowing dates, pre-planting manual weeding was done to make the plot weed free.

3.4.2 Fertilizer and manure application

The recommended dose of fertilizer was applied considering that there was no nutrient stress at any growth stages of maize. A total of 100:60:40 kg NPK ha⁻¹ along with FYM @ 10 t ha⁻¹ were applied. Half dose of N, and full dose of P₂O₅ and K₂O were used as basal before planting the seeds on (7th April, 22nd April and 7th May) and remaining half N was side dressed at knee height stage i.e. 42 days after sowing (DAS). The fertilizers used were Urea, Di-ammonium phosphate (DAP) and Muriate of Potash (MOP).

3.4.3 Seed rate and sowing

Bold, Bio-physically good and healthy seeds of local variety were selected while seed of other varieties were brought from NMRP. Two seeds per hill were dropped manually in the row line. The row to row distance and plant to plant distance were maintained 60 cm and 25 cm respectively. Sowing was done on 7th April, 22nd April and 7th May, 2013 as per treatment.

3.4.4 Gap filling and thinning

Gap filling was done on 15th DAS for all treatment to maintain desired level of plant population. By keeping one plant per hill, all other extra plants were removed maintaining required level of plant distances after 25 DAS.

3.4.5 Irrigation

Soil moisture during first sowing i.e. 7th April was critical for germination therefore, sprinkle irrigation was applied at the time of seed sowing that was 7th April and continued until proper germination upto 13th April for the first sowing.

3.5.6 Weed control

Comparatively, maize sown on 7th April was free of weeds, which was due to lack of rainfall. With the onset of rainfall, weeds emerged so that manual weeding was done at 22 DAS and 35 DAS.

3.4.7 Plant protection

Preventive measures of stem borer was done by the application of Carbofuran granules 3% CG @ 2-3 granules per plant was applied at knee height stage of crop for all sowing dates.

3.4.8 Harvesting and drying

Local, Poshilo makai-1, RML-4/17, and Arun-2 were harvested as per following schedule given in Table 4. Harvesting was done manually. Grain was dried under the roof of the house during day time till the grain moisture reached 15%.

Cultivora	Harvesting date of maize planted on different sowing dates				
Cultivals	7 th April	22 nd April	7 th May		
Local	9 th July	22 nd July	5 th August		
Poshilo makai-1	29 th July	13 th August	27 th August		
RML-4/17	1 st August	13 th August	27 th August		
Arun-2	7 th July	21 th July	5 th August		

Table 4. Date of harvesting of maize cultivars planted in different dates

3.5 Observation recorded to estimate growth and yield attributes and grain response

3.5.1 Biometric observation

3.5.1.1 Leaf area index (LAI)

Leaf area of the plant was measured by taking 3 randomly selected plants from destructive sampling row of each plot at 30 DAS, 45 DAS, 60 DAS, 75 DAS, 90 DAS and 105 DAS by the use of leaf area meter at Central lab of IAAS. Leaves from the plants were detached and leaf area was measured, then after, leaf area index was calculated by dividing leaf area by ground area (Reddy and Reddi, 2005).

$$LAI = \frac{Leaf area (cm2)}{Land area (cm2)}$$

3.5.1.2 Leaf area duration (LAD)

The yield of dry matter is a function of leaf area and its duration, and the net assimilation rate. Assuming other management factors as constant, total assimilation is determined by the leaf area duration (LAD) i.e. the size of leaf area and the time periods through which it is retained. LAD of a crop is a measure of its ability to produce leaf area on unit area of land throughout its life. LAD is calculated by the formula:

LAD (days) =
$$L_1 + L_2 x (t_2 - t_1) + \dots + L_{n-1} + L_n x (t_n - t_{n-1})$$

2 2

Where, L_1 is leaf area index at the time t_1 ; L_2 is leaf area index at the time t_2 ; L_n = leaf area index at the time t_n and L_{n-1} = leaf area index at the time t_{n-1} (Reddy and Reddi, 2005).

3.5.1.3 Dry matter accumulation

After the measurement of leaf area, detached leaves were packed in the envelope and dried in hot oven for 48 hours at the temperature of 72 ° C. The remaining portion i.e. stem of plant was vertically ruptured and then packed in the envelope and dried in hot oven for 48 hours at the temperature of 105°C to get a constant weight for recording the periodic dry matter accumulation. Then, the dry weight of leaves and stem were taken in combination and expressed in t ha⁻¹.

3.5.1.4 Crop growth rate (CGR)

The dry matter accumulation of the crop per unit land area in a time is referred to crop growth rate (CGR), expressed as gm⁻²day⁻¹. The AGDM (gm⁻²) calculated for each plots at different growth stages were used to obtain the CGR (gm-2day-1) during the sampling intervals by using the formula given by Brown (1984).

Crop growth rate (CGR) = $\frac{W_2 - W_1}{SA (T_2 - T_1)}$

Where, W_1 and W_2 are AGDM in gram at the time T_1 and T_2 respectively. SA is area occupied by the plant at each sampling.

3.5.2 Yield attributing characters

3.5.2.1 Number of harvested ears

Total numbers of ears harvested from net harvestable area were recorded as harvested ears plot⁻¹ and it is converted in numbers ha⁻¹.

3.5.2.2 Number of ears plant⁻¹

The ears obtained from the net harvested plot were divided with the plant population of the individual plot to obtain total number of ears plant⁻¹.

3.5.2.3 Number of kernel rows ear⁻¹

Ten randomly selected ears from each plot were dehusked manually and all the kernel rows were counted and were reported as number of kernel rows ear⁻¹.

3.5.2.4 Number of kernels row⁻¹

Ten randomly selected ears from each plot were shelled manually and all the kernels were counted and were reported as number of kernels ear⁻¹.

3.5.2.5 Thousand grain weight (TGW)

One thousand shelled maize kernels from each plot were randomly taken, weighed and recorded as test weight and expressed in gram (g). The kernels used for test weight were corrected to 15% moisture content.

3.5.2.6 Grain moisture content (%)

Grain moisture content was taken after measuring the field ears weight. Ten ears were selected randomly. These ears were dried under roof of the house and central two kernel rows were shelled out. The moisture content was measured from bulked kernels taken from all ears. Multigrain moisture meter made by Farmex Company of USA was used to measure moisture.

3.5.2.7 Biological yield

The harvest produce from the sample row of individual plot was made the bundle and weight of bundle was considered as biological yield and expressed in t ha⁻¹.

3.5.2.8 Grain yield

After drying and shelling of the harvested produce of each sample row of individual plot, the grain yield was recorded. Grain yield was calculated on hectare basis by using following formulae:

FEW x SP x (100- GMC) Grain yield (kg ha $^{-1}$) = ------NHA x 85 x 10

Where,

FEW= Filled ears weight (kg)	SP= Shelling percentage (%)

GMC= Grain moisture at content harvest (%) NHA=Net harvested area (m^2)

3.5.2.9 Stover yield

All maize stems with leaves was harvested from the base from the net harvested area and weighted immediately after harvesting. Husk was also included while taking stover yield. Stover yield was calculated on hectare basis in t ha⁻¹.

3.5.2.10 Harvest index

Harvest index (HI) was computed by dividing economic yield with the biological yield as per the following formula.

Economic yield or Grain yield (t/ha) HI = -----Biological yield (t/ha)

3.6 Observation recorded to estimate agro-climatic indices

3.6.1 Days to phenological stages

3.6.1.1 Emergence

Seed emergence was recorded when about 50% of the seedling had emerged out of the soil.

3.6.1.2 Days to 75% tasseling

The date of tasseling was recorded from tassel emergence to 75 % of plant had tasseled in each plot .Ten plants from net plot rows were taken for each phenological observation.

3.6.1.3 Days to 75% silking

The date was recorded from the initiation of silk to 75% silking in each plot. The silk exposed 1cm from closed ear was considered as emerged silk. The same rows as that of tasseling records were taken for days of silking.

3.6.1.4 Days to 75% physiological maturity

The appearance of blank layer between ear surface and ear grains and occurrence of senescence of ear husks was considered as an indication to physiological maturity.

3.6.1.5 Heat units

The various measurements of accumulated heat units were calculated according to the following formulae of Rajput (1980).

3.6.1.5.1 Growing degree days: {(Tmax-Tmin)/2}-Tb

Where: Tb =Base temperature= 10° C

3.6.1.5.2 Phenothermal index (PTI) = GDD/Growth duration

3.6.1.5.3 Heat use efficiency = Grain yield (kg/ha)/ GDD

3.7 Statistical analysis

Analysis of variance (ANOVA) (Rangaswamy, 1995) for all recorded parameters was done using MS Excel and MSTAT-C computer based package. All the analyzed data were subjected to both Least Significant Difference (LSD) and Duncan's significance was considered at 5% level for significance test.

3.8 Observation estimation for model testing

3.8.1 Simulation modeling

To assess growth, phenology and yields of maize and to see the impact of climate change, field data under varietal and sowing dates experimentation were inserted in various input file structures of CRRES-Maize model before its calibration, validation and evaluation.

3.8.2 Data requirements for model evaluation

Model requires a well-defined set of field data to simulate impact of climate in varietal performance of maize. For CERES-Maize model embedded in DSSAT 4.5 version, standard file formats have been developed where users can give input data in those formats for model calibration and evaluation (Tsuji et al 1994). For DSSAT-CSM-CERES-Maize, such input files are grouped into experimental details, soil, weather, species, ecotype, cultivar, and crop performance. Experimental details (i.e., agronomic management) were entered into FILEX, daily weather data into FILEW (with extension name WTH), and soil profile data into FILES, and cultivar (with extension name CUL) files. Performance files, FILEA and FILET were needed to enter the measured crop performance and soil conditions data. Description of Soil file, A file, T file, X file and weather file prepared for maize experiments have been given in appendices 14, 15, 16, 17 and 18 respectively.

3.8.3 Model calibration

Calibration consists of making adjustments to model parameters to give the best fit between simulated results and results obtained from measurements on the real system.

The data collected from the best treatment for each cultivar was used for calibrating the model, which was a process of adopting some model parameters to the local conditions by adjusting their values. Calibration was done as suggested by Tsuji *et al.* (1994). The calibration process involved of selecting an existing cultivar in the International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT, 1993) genetics data file similar to the one to be calibrated and its genetic coefficients were used.

To estimate the genetic coefficients, information from the four maize varieties (Local, Poshilo makai-1, Hybrid-4/17 and Arun-2) planted each on 7th April were used. An ecotype coefficient of IB0001 was used for all the four maize cultivars. A series of runs were made to calibrate the genetic coefficients were then used for validation and evaluation of model. To estimate the genetic coefficients associated with plant development (P1, P2 and P5), the information collected from the field experimentation on average thermal requirements to reach the anthesis and physiological maturity were used The two genetic coefficients controlling the rate of leaf appearance (PHINT) was adjusting until the predicted and measured final number of leaves matched.

3.8.4 Model validation and evaluation

The remaining data set, not used previously in model calibration was now used for validation and evaluation of model. The four varieties sown on 22^{nd} April and 7th May was used for validation of the model. The parameters used for validation of the model are days to anthesis, days to physiological maturity, grain yield, no of kernel at maturity (no per m²) and unit weight of kernel at maturity {g (dm)/ha}.

The model was evaluated using the root mean square error (RMSE) and index of agreement (D-Stat) statistics (Willmott, 1982). The d-stat of a good model should approach to unity and RMSE approach to zero. The RMSE is considered the best overall measure of model performance as it summarizes the mean difference in the units of observed and predicted values (Toit and Toit, 2003).

3.8.5 Sensitivity analysis

The sensitivity analysis was carried out as follows:

- The model used 7th April planting for all maize cultivars as a base to sensitivity of CERES-Maize to various parameters. Any kind of modification in the parameter would bring the change in out-put.
- The sensitivity of the model was tested for a wide range of variables (cultivars, sowing dates, weather years and different climate change scenarios) that influence yields of maize cultivars. Each variable to be tested for its sensitivity was altered once at a time and the model was re-run each time.
- Sensitivity to climate change parameters was done by altering minimum and maximum temperature by \pm 2 ⁰C, solar radiation by \pm 1 MJm⁻²day⁻¹ and CO₂ concentration increasing by 20 ppm.

4 RESULTS

This section deals about results obtained during the investigation, and shown with the help of tables as well as figures wherever suitable. Basically, it consists of three features a) results obtained from effect of sowing dates and maize cultivars on growth attributes, grain yield and yield attributes as analyzed statistically. b) effect of agroclimatic indices like growing degree days, phenothermal index and heat use efficiency of various maize genotypes and c) evaluate the CSM-CERES-Maize model for its ability to simulate agronomic management and climate change parameters viz. phenology and yield of various maize genotypes.

4.1 Statistical analysis

4.1.1 Growth attributes of maize

4.1.1.1 Above ground dry matter (AGDM)

The differences between the dry matter means of maize planted on various sowing dates were significantly (p<0.05) different at all DAS except at 45 DAS (Table 5). At 30 DAS, dry matter accumulation was the highest for maize planted on 7th May (0.474 t/ha), followed by dry matter (0.289 t/ha) of sowing date 22^{nd} April and the lowest (0.207 t/ha) of sowing date 7th April. The mean dry matter accumulation observed for 7th April planting were 5.762 t/ha, 8.532 t/ha and 10.12 t/ha during 60, 75 and 90 DAS, respectively, which were significantly higher than 22^{nd} April sowing (5.064, 7.493 and 9.077 t/ha at 60, 75 and 90 DAS, respectively). Among the sowing dates the lowest dry matter accumulation was recorded for 7th May planting (4.866, 6.629 and 8.082 t/ha at 60, 75 and 90 DAS, respectively).

So far the dry matter production with respect to varieties was concerned; dry matter production was non-significant among the varieties at 30 DAS. At 45 DAS, dry matter

accumulated by RML-4/17 (2.660 t/ha) was the highest and rest of the varieties had statistically similar dry matter accumulation whose mean values were 2.246 t/ha, 1.925 t/ha and 2.142 t/ha for Poshilo makai-1, Arun-2 and Local, respectively. At 60 DAS, dry matter accumulations were 6.297 t/ha, 5.289 t/ha, 4.727 t/ha and 4.610 t/ha ranking from the highest to the lowest for RML-4/17, Poshilo makai-1, Arun-2 and Local, respectively. Similarly at 75 DAS, RML-4/17 had 8.956 t/ha dry matter accumulation which was the highest among the varieties and rest of the varieties had statistically similar dry matter accumulation. In addition to this, at 90 DAS, dry matter accumulation were 11.60 t/ha, 8.778 t/ha, 8.015 t/ha and 7.971 t/ha ranging from the highest to lowest for RML-4/17, Poshilo makai-1, Local and Arun-2 respectively. Here also dry matter accumulation was statistically at par for Local and Arun-2.

At all growth stages, interaction effect of sowing dates and varieties were found non-significant (p<0.05) except at 75 DAS for dry matter accumulation. RML-4/17 planted on 7th April had the highest while Local planted on 7th May had the lowest dry matter accumulation among the treatments. Arun-2 and Local both planted on 7th April had higher dry matter production than RML-4/17 planted on 7th May. Similarly, Local cultivar planted on 22nd April had higher dry matter production than Poshilo makai-1 planted on 7th May.

Factors	Dry matter accumulation (t/ha)					
ractors	30 DAS	45 DAS	60 DAS	75 DAS	90 DAS	
Sowing dates						
7 th April	0.207 ^c	2.273	5.762 ^a	8.532 ^a	10.120 ^a	
22 nd April	0.289 ^b	2.206	5.064 ^b	7.493 ^b	9.077 ^b	
7 th May	0.473 ^a	2.251	4.866 ^b	6.629 ^c	8.082 ^c	
SEm <u>+</u>	0.027	0.108	0.160	0.137	0.187	
LSD (0.05)	0.080	NS	0.469	0.402	0.548	
Varieties						
Local	0.339	2.142 ^b	4.610 ^c	6.938 ^b	8.015 ^c	
Poshilo makai-1	0.298	2.246 ^b	5.289 ^b	7.396 ^b	8.778 ^b	
RML-4/17	0.264	2.660 ^a	6.297 ^a	8.956 ^a	11.600 ^a	
Arun-2	0.390	1.925 ^b	4.727 ^{bc}	6.916 ^b	7.971°	
SEm <u>+</u>	0.034	0.133	0.196	0.168	0.229	
LSD (0.05)	NS	0.389	0.575	0.492	0.671	
CV%	30.01%	16.72%	10.59%	6.29%	7.12%	

Table 5. Effect of sowing dates and varieties on dry matter accumulation of maize at different growth stages during spring, 2013 at Shivamandir-2, Nawalparasi

Mean followed by common letter (s) within each column are not significantly different (p<0.05) by DMRT; NS= non-significant

4.1.1.2 Leaf area index

The sowing dates exhibited mean LAI significantly (p<0.05) different at all DAS (Table 6). At 30 DAS, LAI of maize planted on 22nd April was the highest and at par with maize planted on 7th May but the lowest for maize planted on 7th April whose values were 0.860, 0.823 and 0.319 respectively. At 45 DAS, LAI was the highest for maize planted on 7th April (2.750) followed by 22nd April (2.483) and the lowest on 7th May (2.004). At 60 DAS, LAI were 3.288, 3.111 and 2.770 for maize planted on 7th April, 22nd April and 7th May respectively. Statistically similar LAI of maize was observed between 7th April and 22nd April plantation at 60 DAS, it was higher than maize planted on 7th May for LAI

values. The same trend of result of LAI at 45 DAS and at 75 DAS was overlooked and the values for mean LAI at 75 DAS were 3.007, 2.548 and 1.773 for 7th April, 22nd April and 7th May plantation, respectively.

The significant (p<0.05) difference on LAI due to varieties at various DAS was seen. At 30 DAS, mean LAI for RML-4/17, Poshilo makai-1, Arun-2 and Local were 0.820, 0.649, 0.621 and 0.579, respectively in order of the highest to the lowest values. RML-4/17 had the highest LAI than rest of the varieties had statistically similar LAI. At 45 DAS, RML-4/17 had highest LAI (2.898) followed by Poshilo makai-1 (2.535). While, Arun-2 and Local had statistically similar but the lowest LAI whose values were 2.148 and 2.068, respectively. At 60 DAS, mean LAI for RML-4/17, Poshilo makai-1, Arun-2 and Local were 3.818, 3.314, 2.779 and 2.315, respectively. RML-4/17 was the holding highest LAI followed by Poshilo makai-1, while Arun-2 had the highest LAI among short durational varieties, but lower than long durational varieties. At 75 DAS, LAI for RML-4/17, Poshilo makai-1, Arun-2 and Local were 3.044, 2.728, 2.255 and 1.744, respectively. Here, RML-4/17 and Poshilo makai-1 had statistically similar and higher LAI than Arun-2 and Local while, Local had the lowest LAI among the tested varieties.

Interaction effect of sowing dates and varieties on LAI was found significantly (p<0.05) difference at 30 DAS only. The LAI of RML-4/17 planted on 7th April was found lowest among the treatments, while same cultivar when planted on 22nd April and 7th May was found the highest in LAI among the treatments. Similarly Poshilo makai-1 planted on 7th April was the second lowest LAI producer among the treatments which was also statistically similar to RML-4/17 planted on 7th April. While, Poshilo makai-1 planted on 22nd April produced higher leaf area index among the treatments after RML-4/17 planted on 22nd April and 7th May.
4.1.1.3 Leaf area duration

The leaf area duration exhibited significant result due to sowing dates (Table 6). LAD for 7th April, 22nd April and 7th May were 170.1, 142.1 and 101.7, respectively. LAD for maize planted on 7th April was the highest followed by 22nd April and the lowest for maize planted on 7th May. Similarly varieties also showed significant result. RML-4/17 had the highest LAD (183.7) followed by Poshilo makai-1 (155.5) then Arun-2 (114.2) and local (98.30).

Table 6. Effect of sowing dates and varieties on leaf area indices (LAI) and leaf area duration (LAD) at different growth stages of maize during spring, 2013 at Shivamandir-2, Nawalparasi

Factors		Leaf are	a index		Leaf area duration
Tactors .	30 DAS	45 DAS	60 DAS	75 DAS	
Sowing dates					
7 th April	0.319 ^b	2.750 ^a	3.288 ^a	3.007 ^a	170.1 ^a
22 nd April	0.860^{a}	2.483 ^b	3.111 ^a	2.548 ^b	142.1 ^b
7 th May	0.823 ^a	2.004 ^c	2.770 ^b	1.773 ^c	101.7 ^c
SEm <u>+</u>	0.047	0.061	0.074	0.103	3.390
LSD (0.05)	0.137	0.178	0.216	0.301	9.943
Varieties					
Local	0.579 ^b	2.068 ^c	2.315 ^d	1.744 ^c	98.30 ^d
Poshilo makai-1	0.649 ^b	2.535 ^b	3.314 ^b	2.728 ^a	155.5 ^b
RML-4/17	0.820^{a}	2.898 ^a	3.818 ^a	3.044 ^a	183.7 ^a
Arun-2	0.621 ^b	2.148 ^c	2.779 ^c	2.255 ^b	114.2 ^c
SEm <u>+</u>	0.054	0.070	0.085	0.126	3.915
LSD (0.05)	0.158	0.205	0.249	0.368	11.48
CV%	24.04%	8.71%	8.34%	14.52%	8.51%

Mean followed by common letter(s) within each column are not significantly different (p<0.05) by DMRT; NS= non-significant

4.1.2 Yield attributing characters and yield

4.1.2.1 Grain and stover yields

Grain and stover yields were significant (p<0.05) different for sowing dates (Table 7). Maize planted on 7th April had the highest grain yield (5.13 t/ha) and stover yield (14.35 t/ha) followed by maize planted on 22^{nd} April in both grain (4.10 t/ha) and stover (14.26 t/ha) yields, but stover yield of maize sown on 7th April and 22^{nd} April were found to be at par. Maize planted on 7th May had the lowest grain (3.692) t/ha yield and stover (12.58 t/ha) yield.

In addition to this, both grain and stover yields were found to be statistically (p<0.05) different due to varieties but the result for both parameters were similar. Grain and stover yields were the highest for RML-4/17 followed by Poshilo makai-1 then Arun-2 and the lowest for Local. Mean grain yield at 15% moisture were 6.03 t/ha, 4.73 t/ha, 3.55 t/ha and 2.92 t/ha for RML-4/17, Poshilo makai-1, Arun-2 and Local, respectively. Similarly, mean stover yields were 17.18 t/ha, 14.47 t/ha, 12.62 t/ha and 10.64 t/ha for RML-4/17, Poshilo makai-1, Arun-2 and Local, respectively.

Interaction effects of sowing dates and varieties on grain and stover yields were significantly different. RML-4/17 planted on 7th April had recorded the highest grain yield followed by Poshilo makai-1 planted on 7th April. For rest of the treatments, RML-4/17 (planted on 22nd April and 7th May) had higher grain yield than Poshilo makai-1 (planted on 22nd April and 7th May), followed by Arun-2 (planted on 7th April, 22nd April and 7th May). The least grain yield was recorded for Local planted on 7th April, 22nd April and 7th May.

Similarly, RML-4/17 planted on 7th April and 22nd April had statistically similar and the highest stover yield among the treatments. Poshilo makai-1 planted on 7th April and 22nd April were statistically similar had higher stover yield after RML-4/17 planted on 7th and 22nd April but higher than RML-4/17 planted on 7th May. Arun-2 planted on 22nd April had the highest stover yield than Poshilo makai-1 planted on 7th May and Arun-2 planted (7th April and 7th May). Local maize planted on 7th May had higher stover yield followed by those planted on 22nd April and 7th April.

4.1.2.2 Harvest index

Harvest index showed significant (p<0.05) different due to sowing dates (Table 7). Maize planted on 7th April had the highest HI while, lower and statistically similar HI was observed for maize planted on 22nd April and 7th May. The mean HI for maize planted at 7th April, 22nd April and 7th May were 0.3474, 0.2893 and 0.2903, respectively.

As similar to sowing dates, HI was found to be significant (p<0.05) due to varieties. Long durational varieties had higher HI than short durational varieties. HI for Local, Poshilo makai-1, RML-4/17 and Arun-2 were 0.278, 0.326, 0.351 and 0.282, respectively.

Interaction effects of sowing dates and varieties on HI were found to be significant (p<0.05). RML-4/17 planted on 7th April had the highest HI among the treatments. Poshilo makai-1 planted on 7th April had highest HI than RML-4/17 planted 22nd April and 7th May. There was no statistically difference between Poshilo makai-1 planted on 22nd April and 7th May, Local (planted on 7th and 22nd April), Arun-2 planted on 7th April and RML-4/17 planted on 22nd April in their respective HI. Similarly, Arun-2 planted on 22nd April and 7th May had no statistical difference with Local planted on 7th May however these values were lowest among the treatments.

Factors	Grain yield at 15% MC (t ha ⁻¹)	Stover yield (t ha ⁻¹)	Harvest index
Sowing dates			
7 th April	5.126 ^a	14.35 ^a	0.347 ^a
22 nd April	4.104 ^b	14.26 ^a	0.289 ^b
7 th May	3.692 ^c	12.58 ^b	0.290 ^b
SEm <u>+</u>	0.078	0.289	0.009
LSD (0.05)	0.227	0.849	0.027
Varieties			
Local	2.920^{d}	10.64 ^d	0.278 ^b
Poshilo	4.725 ^b	14.47 ^b	0.326 ^a
makai-1			
RML-4/17	6.030 ^a	17.18 ^a	0.351 ^a
Arun-2	3.554 ^c	12.62 ^c	0.282 ^b
SEm <u>+</u>	0.089	0.334	0.011
LSD (0.05)	0.262	0.980	0.033
CV%	6.23%	7.30%	9.15%

Table 7. Effect of sowing dates and varieties on grain yields (t ha⁻¹), Stovar yield (t ha⁻¹) and harvest index of maize during spring, 2013 at Shivamandir-2, Nawalparasi

Means followed by common letter (s) with in each column are statistically similar at LSD 0.05

4.1.2.3 The yield components

Four key components of maize yields are number of ears ha⁻¹, number of kernel rows ear⁻¹, number of kernel row⁻¹ and 1000 kernel weight. Both sowing dates and varieties had insignificant (p<0.05) difference for number of ears ha⁻¹.

The mean number of kernel rows ear⁻¹ and kernels row⁻¹ were found significantly (p<0.05) different due to sowing dates. The kernel rows ear⁻¹ were 12.89, 12.47 and 12.22 and kernels row⁻¹ were 27.97, 24.47 and 22.73 for maize planted on 7th April, 22nd April and 7th May, respectively. Maize planted on 7th April had the highest kernel rows ear⁻¹ and kernels row⁻¹ while that planted on 7th May had the lowest kernel rows ear⁻¹ and kernels row⁻¹ and 22nd April planting had intermediate. In addition to this, kernel rows ear⁻¹ and

kernels row⁻¹ were found significantly different due to varieties. The kernel rows ear⁻¹ were 13.77, 13.17, 11.86, 11.31 and kernels row⁻¹ were 30.42, 26.13, 22.58 and 21.10 for RML-4/17, Poshilo makai-1, Arun-2 and Local, respectively. RML-4/17 had the highest kernel rows ear⁻¹ and kernels row⁻¹. Poshilo makai-1 had the second highest value followed by Arun-2 and Local had the lowest values.

Interaction effect of sowing dates and varieties on kernel rows ear⁻¹ was significantly (p<0.05) different. Poshilo makai-1 planted on 7th April had highest kernel rows ear⁻¹ followed by RML-4/17 planted on 7th April, 22nd April and 7th May. However, statistically similar kernel rows ear⁻¹ was found between RML-4/17 planted on 22nd April and 7th May. Then after, Poshilo makai-1 planted on 22nd April and 7th May had higher kernel rows ear⁻¹. From the result it was seen that, long duration varieties had higher number of kernel rows ear⁻¹ than short durational varieties in all sowing dates. Among short durational varieties also, Arun-2 planted on 7th April and 22nd April had statistically similar and higher number of kernel rows ear⁻¹ followed by Arun-2 planted on 7th May.

Similarly, interaction effect of sowing dates and varieties on kernel row⁻¹ was significantly (p<0.05) different. Among the treatments, RML-4/17 planted on 7th April had the highest kernels row⁻¹ while Local planted on 7th May had the lowest kernels ear⁻¹. Poshilo makai-1 planted on 7th April had the second highest kernel row⁻¹ which was even higher than RML-4/17 planted on 22nd April and 7th May, which were statistically similar. Poshilo makai-1 when planted on 22nd April had higher kernels ear⁻¹ than Arun-2 planted on 22nd April and 7th May, kernels row⁻¹ decreased and value was even lower than Arun-2 planted on (7th April and 22nd April) and also those values were statistically similar with Local planted on 7th April and 22nd April. Local cultivar planted on 7th May had lowest kernels row⁻¹ among the treatments.

The test weight varied significantly (p<0.05) among sowing dates. Maize planted on 7th April and 22nd April had statistically similar 1000 grain weight, whose mean values were 232 g and 231.3 g, respectively while maize planted on 7th May had the lowest test weight (224.3 g). Test weight also varied significantly on the basis of maize varieties, RML-4/17 and Poshilo makai-1 had the highest test weight; 244.9 g and 241.2 g, respectively though they were statistically similar. Among short durational varieties, Arun-2 had the highest test weight (226.3 g) but its test weight was found significantly lower than long durational varieties. Local had small grain size and the lowest test weight of 204.4 g.

Table 8. Effect of sowing dates and varieties on yield attributing characters of maize during spring, 2013 at Shivamandir-2, Nawalparasi

Factors	Number of	Kernel rows ear ⁻¹	Kernels row ⁻¹	1000 grain
	Ears ha-1			weight (g)
Sowing dates				
7 th April	59070	12.89 ^a	27.97 ^a	232.0 ^a
22 nd April	57590	12.47 ^b	24.47 ^b	231.3 ^a
7 th May	58150	12.22 ^c	22.73 ^c	224.3 ^b
SEm <u>+</u>	800.7	0.075	0.301	1.686
LSD (0.05)	NS	0.219	0.883	4.946
Varieties				
Local	59750	11.31 ^d	21.10 ^d	204.4 ^c
Poshilo makai-1	56540	13.17 ^b	26.13 ^b	241.2 ^a
RML-4/17	58270	13.77 ^a	30.42 ^a	244.9 ^a
Arun-2	58520	11.86 ^c	22.58 ^c	226.3 ^b
SEm <u>+</u>	980.7	0.092	0.369	2.065
LSD (0.05)	NS	0.268	1.082	6.058
CV%	4.76%	2.07%	4.16%	2.55%

Mean followed by common letter (s) within each column are not significantly different (p<0.05) by DMRT; NS= non-significant

4.1.2.4 Correlation regression studies

To assess relationship between yield attributing traits and grain yield, simple correlation coefficients were worked out. The highly significant positive (p<0.01) correlation were seen between grain yield and yield attributing traits like kernel rows ear⁻¹ (0.906^{**}) , kernels row⁻¹ (0.984^{**}) and 1000 grain weight (0.786^{**}) .

Figure 5. Relationship between grain yield and number of kernel rows ear⁻¹ at shivamandir-

Figure 6. Relationship between grain yield and no of kernels per row at Shivamandir-2, Nawalparasi, 2013

2, Nawalparasi, 2013

Figure 7. Relationship between grain yield and 1000 grain weight (g) at Shivamandir-2, Nawalparasi, 2013

The kernel rows ear⁻¹ contributes approximately 82% ($R^2=0.82$) on grain yield, hereas the remaining 18% increase in grain yield might be due to variables other than kernel rows ear⁻¹. Similarly, approximately 96.8% (R=0.968) contribution of kernels row⁻¹ on grain yield. And the remaining 3.2% increase in grain yield was due to other variables except kernels ear⁻¹. The 1000 kernel weight contributed about 61.7% (R=0.617) towards grain yield. The remaining 38.3% contribution for increasing yield was given by the variables other than 1000 grain weight.

4.2 Effect of agro-climatic indices

4.2.1 Days to phenological stages

Sowing dates had shown significant (p< 0.05) difference on days to phenological stages (Table 9). Maize planted on 7th April, 22nd April and 7th May consumed 31.42, 28.08 and 28 mean days to attain knee height stage, respectively. Similarly to attain anthesis, it took 53.75, 52.42 and 52 mean days, respectively from earlier sowing to late sowing dates. To attain silking, it took 58.08, 56.25 and 55.75 mean days for 7th April, 22nd April and 7th May sowing dates respectively. No of days to attain knee height, anthesis and silking stages between 22nd April and 7th May plantings were found to be statistically at par but,

maize planted on 7th April had consumed higher days to reach knee height, anthesis and silking stages. In addition to this, maize planted on 7th April consumed highest mean days (51.25 days) to accomplish seed filling followed by maize planted on 22nd April (50.83 days) and 7th May planting took least days (49.92 days).

Varietal performance had also shown statistically significant (p< 0.05) difference on days to phenological stages. At knee height stage, Poshilo makai-1 consumed highest mean days (31 days), while that of RML-4/17, Local and Arun-2 consumed 29, 28.33 and 28.33 days, respectively which were found statistically at par. At anthesis, Poshilo makai-1, RML-4/17, Arun-2 and Local consumed 60.33 days, 54 days, 48.22 days and 48.33 days, respectively. Similarly the days recorded for silking were 64 days, 57.78 days, 52.56 days and 52.44 days, respectively. Poshilo makai-1 took the highest days to reach anthesis and silking followed by RML-4/17, but Arun-2 and Local recorded the lowest days to attain those stages. RML-4/17 took the highest seed fill duration (60.67 days) followed by Poshilo makai-1 (53.67 days), Arun-2(43.67 days) and Local took (44.67 days).

The interaction effect of sowing dates and varieties on days to phenological stages was found non-significant (p< 0.05) at all the stages except at knee height stage. The interaction result revealed that hybrid-4/17 planted on 7th April recorded the highest days to attain knee height among the 12 treatments, while same hybrid planted on 22nd April and 7th May took lowest days to reach knee height stage. Poshilo makai-1, when planted on 7th April took higher days to attain knee height stage than Arun-2 and Poshilo makai-1 planted on 7th April and 22nd April, respectively. Local cultivar planted on all three sowing dates consumed statistically higher days to attain knee height stage than Arun-2 planted on 22nd April and 7th May.

Factors	Days to phenological stages (DAS)				
	Knee height stage	Anthesis	Silking	Seed fill duration	
Sowing dates					
7 th April	31.42 ^a	53.75 ^a	58.08 ^a	51.25 ^a	
22 nd April	28.08 ^b	52.42 ^b	56.25 ^b	50.83 ^{ab}	
7 th May	28.00 ^b	52.00 ^b	55.75 ^b	49.92 ^b	
SEm <u>+</u>	0.439	0.431	0.459	0.423	
LSD (0.05)	1.287	1.263	1.346	1.240	
Varieties					
Local	28.33 ^b	48.33 ^c	52.44 ^c	44.67 ^c	
Poshilo makai-1	31.00 ^a	60.33 ^a	64.00 ^a	53.67 ^b	
RML-4/17	29.00 ^b	54.00 ^b	57.78 ^b	60.67^{a}	
Arun-2	28.33 ^b	48.22 ^c	52.56 ^c	43.67 ^c	
SEm <u>+</u>	0.538	0.527	0.562	0.518	
LSD (0.05)	1.576	1.547	1.649	1.518	
CV%	5.21%	2.83%	2.80%	2.89%	

Table 9. Effect of sowing dates and varieties on days to phenological stages of maize during spring season, 2013 at Shivamandir-2, Nawalparasi

Mean followed by common letter (s) within each column are significantly similar

4.2.2 Growing degree days (GDD)

Sowing date exhibited significant different (p<0.05) GDD accumulation at different growth stages (Table 10). At knee height stage, GDD accumulation of maize planted on 7th April (545.4) and 7th May (540.3) were statistically at par but higher than 22^{nd} April (514.4). At anthesis stage, maize planted on 7th May had accumulated the highest GDD (1007) followed by 22^{nd} April (989.1) and the lowest by maize planted on 7th April (976.3). Sowing date for GDD accumulations at silking and seed fill duration was found to be non-significant.

Maize varieties also exhibited significant (p< 0.05) different for GDD accumulation at different growth stages. At knee height stage, Poshilo makai-1 accumulated the highest (569.5) GDD while RML-4/17, Local and Arun-2 accumulated 530.3, 517.3 and 516.5 GDD, respectively. However, those values were statistically at par. At anthesis stage, Poshilo makai-1, RML-4/17, Arun-2 and Local accumulated 1138, 1016, 903.4 and 905.4 GDD, respectively. Poshilo makai-1, RML-4/17, Arun-2 and local accumulated 1210, 1081, 989 and 987.1 GDD, respectively at silking. At both anthesis and silking stages, Poshilo makai-1 accumlated highest GDD followed by RML-4/17 while GDD accumulated by Arun-2 and Local cultivar were statistically at par and were lowest among the varieties. At seed fill period, it was found that, RML-4/17 had accumulated the highest (1190) GDD, followed by Poshilo makai-1 (1054), lowest by Arun-2 (851.7) and local (870.8) which were statistically at par.

Interaction effect of sowing dates and varieties on GDD accumulation at different growth stages was found to be significant (p<0.05) at knee height stage only. Among the 12 treatments, RML-4/17 planted on 7th April had the highest (596.2) GDD accumulation, while same variety RML-4/17 planted on 22nd April (481.4) had the lowest GDD accumulation at knee height stage. After RML-4/17 planted on 7th April, Poshilo makai-1 had led in GDD accumulation. Arun-2 planted on 7th April, Local planted on 22nd April and RML-4/17 planted on 7th May had statistically at par.

Table 10. Effect of sowing dates and varieties on growing degree days accumulated at different phenological stages of maize during spring season, 2013 at Shivamandir-2, Nawalparasi

Factors	Growing degree days, °C day				
	Knee height stage	Anthesis	Silking	Seed fill duration	
Sowing dates					
7 th April	545.4 ^a	976.3 ^b	1062	998.8	
22 nd April	514.4 ^b	989.1 ^{ab}	1066	991.1	
7 th May	540.3 ^a	1007 ^a	1072	985.5	
SEm <u>+</u>	8.677	8.592	8.227	8.401	
LSD (0.05)	25.45	25.20	NS	NS	
Varieties					
Local	517.3 ^b	905.4 ^c	987.1 ^c	870.8 ^c	
Poshilo makai-1	569.5 ^a	1138 ^a	1210 ^a	1054 ^b	
RML-4/17	530.3 ^b	1016 ^b	1081 ^b	1190 ^a	
Arun-2	516.5 ^b	903.4 ^c	989.0 ^c	851.7 ^c	
SEm <u>+</u>	10.63	10.52	10.08	10.29	
LSD (0.05)	31.17	30.86	29.55	30.18	
CV%	5.64%	3.00%	2.67%	2.93%	

Mean followed by common letter(s) within each column are not significantly different (p<0.05) by DMRT; NS= non-significant

4.2.3 Phenothermal index (PTI)

The sowing dates showed significant (p< 0.05) different phenothermal index at different growth stages (Table 11). Phenothermal index were 19.29, 18.31 and 17.35 at knee height stage; 19.36, 18.86 and 18.15 at anthesis stage; 19.24, 18.96 and 18.27 at siking stage and 19.74, 19.49 and 19.48 at seed fill period for 7th May, 22nd April and 7th April respectively. Maize planted on 7th May had highest PTI value while that of 22nd April and 7th April had intermediate and lowest PTI respectively at all growth stages. Statistically at par but the lowest PTI at seed fill period was recorded between maize planted on 7th April and 22nd April.

Effect of varietal performance on PTI at different growth stages was significantly (p<0.05) different at all growth stages except at silking stage. Poshilo makai-1 and RML-4/17 had statistically similar and higher PTI, while that of Arun-2 and Local had statistically similar but the lowest value of PTI at knee height, anthesis and seed fill period.

Interaction effect of sowing dates and varieties on phenothermal index was found to be significant at knee height stage, anthesis and seed fill duration. At knee height stage, Poshilo makai-1 planted on 7th May was exposed to higher GDD in short duration so it's PTI at this stage was higher than any other treatments. Just opposite to this, Local planted on 7th April had the lowest PTI. Local planted on 7th May had the second highest PTI value followed by Arun-2 and RML-4/17 planted on 7th May, which had statistically similar PTI value. It was seen that varieties maize planted late on 7th May had higher PTI values than planted on other sowing dates. All maize varieties planted on 22nd April had intermediate PTI values between first and third sowing dates. Among third sowing date also, long duration varieties had higher PTI values than short durational varieties.

At anthesis, maize varieties planted on 7th May had statistically similar and higher PTI values than rest of the treatments. Among the remaining treatments, RML-4/17 planted on 22nd April had higher PTI followed by other three varieties planted on same date, and also these varieties were statistically similar for their PTI values. At 7th April also, Poshilo makia-1 had higher PTI value, while other three varieties had statistically similar and the lowest PTI values.

At seed fill period, treatments planted on 7th May had higher PTI values among the treatments. RML-4/17 planted on 7th May had the highest PTI value followed by Poshilo makai-1 planted on same date. Both short durational varieties planted on 7th April and 22nd April had statistically similar but the lowest PTI values among the treatments.

Table 11. Effect of sowing dates and varieties on Phenothermal index at different phenological stages of maize during spring season, 2013 at Shivamandir-2, Nawalparasi

Factors		Phenotherm	al index	
	Knee height stage	Anthesis	Silking	Seed fill duration
Sowing dates				
7 th April	17.35 ^c	18.15 ^c	18.27 ^c	19.48 ^b
22 nd April	18.31 ^b	18.86 ^b	18.96 ^b	19.49 ^b
7 th May	19.29 ^a	19.36 ^a	19.24 ^a	19.74 ^a
SEm <u>+</u>	0.022	0.013	0.066	0.009
LSD (0.05)	0.066	0.038	0.195	0.027
Varieties				
Local	18.26 ^b	18.74 ^b	18.83	19.50 ^b
Poshilo makai-1	18.40 ^a	18.87 ^a	18.90	19.64 ^a
RML-4/17	18.35 ^a	18.83 ^a	18.73	19.62 ^a
Arun-2	18.26 ^b	18.74 ^b	18.83	19.51 ^b
SEm <u>+</u>	0.027	0.016	0.081	0.011
LSD (0.05)	0.080	0.046	NS	0.033
CV%	0.44%	0.23%	1.22%	0.16%

Mean followed by common letter (s) within each column are not significantly different (p<0.05) by DMRT; NS= non-significant

4.2.4 Heat use efficiency of maize

From the result (Table 12), it was observed that all the cultivars were more efficient at early planting condition than the late growing condition. RML-4/17 had markedly higher HUE (3.502) followed by Poshilo makai-1 (2.757), Arun-2 (2.190) and the lowest with Local cultivar (1.777) under 7th April planting condition. Under late planting conditions, all maize cultivars had reduced HUE at various magnitude in comparison to early planting condition by following same trend with little bit different between Arun-2 and Poshilo makai-1.At later planting dates, Arun-2 was second heat use efficient cultivar followed by Poshilo makai. The reductions in HUE for long durational maize cultivars were higher for 7th April vs 22nd April planting and for short durational cultivars HUE reduction was higher for 22nd April vs 7th May. The decrease in HUE due to late sowing depended on varieties and found to be higher in Poshilo makai-1 (36.742%) in between 7th April vs 7th May planting followed by RML-4/17 (31.296%) between 7th April vs 22nd April and Local cultivar (19.457%) between 22nd April vs 7th May planting. Arun-2 had less reduction in HUE amongst the planting time and therefore it can be concluded that it is the best cultivar for both early and late spring planting.

Table 12. Heat use efficiency (HUE) of different maize cultivars as affected by planting dates

Cultivars	Heat use efficiency (HUE)			Reduction (%) due to late sowing		
	April 7	April 22	May 7	April 7 vs April 22	April 22 vs May 7	April 7 vs May 7
Local maize	1.777	1.729	1.478	2.701	19.457	16.826
Poshilo makai-1	2.757	2.032	1.744	26.297	14.173	36.742
RML-4/17	3.502	2.406	2.36	31.296	1.912	32.609
Arun-2	2.190	2.147	1.803	1.963	16.022	17.671

4.3 CSM-CERES-MAIZE model

4.3.1 Model calibration

Model calibration or parameterization is the adjustment of parameters so that simulated values compare well with observed values. Using statistically analyzed data, various genetic coefficients of the maize cultivars under study were adjusted by using CSM-CERES-Maize model embedded under DSSAT v4.5. The meanings of the various genetic coefficients for maize cultivars are presented below:

P1: Thermal time from seedling emergence to the end of the juvenile phase (expressed in degree days above a base temperature of 8°C) during which the plant is not responsive to changes in photoperiod.

P2: Extent to which development (expressed as days) is delayed for each hour increase in photoperiod above the longest photoperiod at which development proceeds at a maximum rate (which is considered to be 12.5 hours).

P5: Thermal time from silking to physiological maturity (expressed in degree days above a base temperature of 8°C).

G2: Maximum possible number of kernels per plant.

G3: Kernel filling rate during the linear grain filling stage and under optimum conditions (mg/day).

PHINT: Phylochron interval; the interval in thermal time (degree days) between successive leaf tip appearances.

4.3.1.1 Calibrated genetic coefficients of tested cultivars

The genetic coefficient of maize cultivars were adjusted by running the model for 15 times with various possible changes in the genetic coefficients till the simulated values for parameters such as days to anthesis, physiological maturity day, grain yield matches with observed values for those observations. The value such as 230 (P1), 0520 (P2), 940 (P5), 360 (G2), 9.28 (G3) and 38.90 (PHINT) were adjusted for local; 400 (P1), 0.600 (P2), 1130 (P5), 590.9 (G2), 8.38 (G3) and 18.90 (PHINT) were adjusted for Poshilo makai-1; 380.0 (P1), 0.260 (P2), 1290 (P5), 816.9 (G2), 7.36 (G3) and 8.90 (PHINT) were for RML-4/17 and 230.0 (P1), 0.520 (P2), 910.0 (P5), 440.0 (G2), 9.88 (G3) and 38.90 (PHINT) for Arun-2.

Coefficients	Local cultivars	Poshilo makai-1	RML-4/17	Arun-2
P1	230	400	380	230
P2	0.520	0.600	0.260	0.520
P5	940	1130	1290	910
G2	360	590.9	816.9	440
G3	9.28	8.38	7.36	9.88
PHINT	38.90	18.90	8.9	38.90
Simulated				
Anthesis	49	61	56	49
Physiological maturity	94	114	116	92
Grain yield	3121	5933	7684	3765
Observed				
Anthesis	49	61	56	49
Physiological maturity	94	114	116	92
Grain yield	3124	5931	7685	3768

Table 13. Genetic coefficients of maize cultivars during spring, 2013 at Shivamandir-2, Nawalparasi

4.3.2 Model validation

Genetic coefficient of four varieties determined during calibration of the model was used for validation of the model. Model validation was done by comparing model performance against data collected on days to anthesis and physiological maturity, unit number of grain, unit grain weight and grain yield for all eight treatments (April 22 and May 7 planted varieties).

Model evaluation for development, yield and time-course of growth was performed using RMSE and index of agreement (D-index) as suggested by Willmott (1982) and Willmott *et al.* (1985). For all eight treatments model fairly predicted days to anthesis, days to physiological maturity, number at maturity (no m⁻²), unit weight at maturity (g[dm]/unit area) and grain yield. Days to anthesis was well simulated with RMSE of 0.426 days and D-index of 0.998. Similarly, days to physiological maturity was simulated with RMSE of 0.674 days and D-index of 0.999. Agreement between simulated and observed grain number at maturity with RMSE of 85.287 grain per m² and D-index of 0.993 was found satisfactory. In addition to this, a good agreement between observed and predicted unit weight at maturity with RMSE of 0.012 g kernel⁻¹ and D-index of 0.854 was found. The grain yield was simulated with RMSE of 54.94 kg per ha and D-index of 1.0 against observed values of grain yield for all eight treatments. Overall performance of CSM-CERES-Maize embedded in DSSAT 4.5 was found satisfactory at Shivamandir-2, Nawalparasi.

Figure 8. Simulated and observed anthesis days of treatments

Figure 9. Simulated and observed physiological maturity days of treatments

Figure 10. Simulated and observed grain yield of treatments

Figure 11. Simulated and observed no of grain per m² of treatments

Figure 12. Simulated and observed unit weight at maturity for different treatments

4.3.3 Sensitivity analysis

4.3.3.1 Sensitivity analysis for sowing dates

Four sowing dates were used to study the sensitivity of simulated yield by using CERES-Maize model. The response of maize cultivars to sowing dates was different for each cultivar. Short durational varieties had positive effect on yield with increment of yield of Local cultivar by 11.78% and 16.61% and Arun-2 by 12.71% and 18.81% when sensitivity analyses were done for 12th April and 17th April, respectively. Simulation for 27th April showed decreased in yield by 16.87% in Local and 15.84% in Arun-2 and it was decreased by 18.28% in Local and 18.13% in Arun-2, when simulation was done for 2nd May plantation.

Similarly, the effect of sowing dates seems to be negative on yield of longer durational varieties too. The yield of Poshilo makai-1 decreased by 31.33%, 35.12%, 23.84% and 25.88% when sensitivity analysis was done for 12th April, 17th April, 27th April and 7th May, respectively. In case of RML-4/17, yield increased slightly by 2.51% when sensitivity was done for 12th April but it's yield also decreased by 28.11%, 20.01% and 23.84 % when sensitivity analysis was done for 17th April, 27th April and 2nd May, respectively.

For all varieties, postponing sowing date had shortening effect on growth period of all varieties.

Sowing dates	Varieties	Simulated grain	% yield	Anthesis	Maturity
		yield (kgha ⁻¹)	change	days	days
7 th April*	Local	3124	100	49	94
	Poshilo makai-1	5931	100	61	114
	RML-4/17	7685	100	56	116
	Arun-2	3768	100	49	92
12 th April	Local	3492	+11.78	49	93
	Poshilo makai-1	4073	-31.33	63	116
	RML-4/17	7878	+2.51	56	116
	Arun-2	4247	+12.71	49	92
17 th April	Local	3643	+16.61	49	93
	Poshilo makai-1	3848	-35.12	61	114
	RML-4/17	5525	-28.11	56	116
	Arun-2	4477	+18.82	49	92
27 th April	Local	2597	-16.87	46	90
	Poshilo makai-1	4517	-23.84	61	113
	RML-4/17	6147	-20.01	55	114
	Arun-2	3171	-15.84	46	89
2 nd May	Local	2553	-18.28	47	90
	Poshilo makai-1	4396	-25.88	59	111
	RML-4/17	5853	-23.84	54	114
	Arun-2	3085	-18.13	47	89

Table 14. Sensitivity of simulated yields of maize cultivars to sowing dates

* denotes standard treatment

4.3.3.2 Sensitivity analysis for no water stress condition

Maize planted on 7th April faced pre-vegetative drought stress so a simulation study on grain yield of maize cultivars under no water stress condition was done for their possible yield outcome. Under no water stress condition, model predicted yields of Local, Poshilo makai-1, RML-4/17 and Arun-2 would have been increased by 6.183%, 11.951%, 18.230% and 6.634% respectively.

Water management	Varieties	Simulated grain	% yield
options		yield (Kgha ⁻¹)	Change
Rainfed condtion*	Local	3121	100
	Poshilo makai-1	5931	100
	RML-4/17	7685	100
	Arun-2	3768	100
No water stress	Local	3314	106.183
condition	Poshilo makai-1	6639	111.951
	RML-4/17	9086	118.230
	Arun-2	4018	106.634

Table 15. Sensitivity of simulated yields of maize cultivars to no water stress condition

* denotes standard treatment

4.3.3.3 Sensitivity to variety

The sensitivity analyses of varieties were done on the basis of their known genetic coefficient (Bhusal, 2008 and Sapkota, 2006). Four maize cultivars; Deuti, Upahar, Rampur Composite and Arun-4 with planting date 2013/4/7 were used for sensitivity analysis. These genetic coefficient values were used to simulate their yield, anthesis day and Physiological maturity day.

Among these varieties, Rampur Composite gave the highest yield (6493 kg ha⁻¹) whereas yield of Upahar was 6079 kg ha⁻¹, although both of them had similar simulated anthesis day (57 days) and physiological maturity day (98 days). Deuti and Arun-4 produced approximately similar simulated yield of 4234 kg ha⁻¹ and 4221 kg ha⁻¹, respectively. However, physiological maturity day of Deuti was higher (97 days) than Arun-4 (89 days). But both of these varieties had approximately similar seed fill duration.

Varieties	Antheis days	Physiological maturity days	Grain yield (kg ha ⁻¹)
Deuti(ZM-621)	59	97	4234
Rampur composite	57	98	6493
Upahar	57	98	6079
Arun-4	52	89	4221

Table 16. Sensitivity on simulated yields of maize to various cultivars

4.3.3.4 Simulation to weather years

CERES-Maize model was run using five years weather data including weather year of 2013 as a standard (Table 17). Variation in climatic data in each year showed different simulated yields in respective years. Maize varieties responded differently with change in weather years. Maize production was seen very favorable in 2006 as yield of short durational varieties (Local and Arun-2) had increased by 125.064% and 124.682%, respectively whereas long durational varieties (Poshilo makai-1 and RML-4/17) had increased only by 34.092% and 58.439%, respectively. Similar trend of result was noticed in 2007. The yield of Local and Arun-2 had increased by 85.179% and 83.413% whereas Poshilo makai-1 and RML-4/17 had 18.901% and 39.831% increment in yield, respectively. There was simultaneous decreased in yield by 82.49%, 53.073% in Local; by 83.757%, 57.325% in Arun-2; by 82.532%, 59.0% in Poshilo makai-1 and by 83.10%, 49.50% in RML-4/17, when simulation was done for weather years 2008 and 2011, respectively. We can notice both growth duration as well as yield of maize had declined down recently so we can verify that changing climate had negative impact in spring maize production.

Weather	Varieties	Simulated grain	% yield change	Anthesis	Growth
Years		yield (Kg ha ⁻¹)	(days)	(days)	Duration
2013/4/7	Local	3124	100	49	94
	Poshilo makai-1	5931	100	61	114
	RML-4/17	7685	100	56	116
	Arun-2	3768	100	49	92
2011/4/7	Local	1466	46.927	45	87
	Poshilo makai-1	2432	41.005	55	106
	RML-4/17	3881	50.501	52	111
	Arun-2	1608	42.675	45	86
2008/4/7	Local	547	17.51	44	85
	Poshilo makai-1	1036	17.468	53	104
	RML-4/17	1299	16.903	51	109
	Arun-2	612	16.243	44	83
2007/4/7	Local	5785	185.179	69	133
	Poshilo makai-1	7052	118.901	-	146
	RML-4/17	10746	139.831	-	146
	Arun-2	6911	183.413	69	131
2006/4/7	Local	7031	225.064	70	135
	Poshilo makai-1	7953	134.092	89	169
	RML-4/17	12176	158.439	81	172
	Arun-2	8466	224.682	70	133

Table 17. Sensitivity of simulated yields of maize cultivars to weather years

Figure 13. Average solar radiation pattern of every 20 days from 97 to 256 days period of

Figure 14. Average maximum temperature pattern of every 20 days from 97 to 256 days

Figure 15. Average minimum temperature pattern of every 20 days from 97 to 256 days period of years

Figure 16. Average rainfall pattern of every 20 days from 97 to 256 days period of years.

4.3.3.5 Simulation to climate change parameters

Various scenarios of temperature, carbon dioxide concentration and solar radiation were selected for running sensitivity analysis of yields simulated by CERES-Maize for maize cultivars (Table 18). Compared to simulated yield of standard treatment, the increase in yield was 12.07%, 7.92%, 20.01% and 11.74% for Local, Poshilo makai-1, RML-4/17 and Arun-2, respectively when temperature (both max and min temperatures) were decreased by 2 ⁰C and CO₂ concentration maintained constant at 380 ppm with no change in solar radiation. But, when temperature was increased by 2 °C yield of Local, Poshilo makai-1,RML-4/17 and Arun-2 decreased by 8.07%, 3.92%, 16.01% and 7.74%, respectively. Elevated CO₂ by 20 ppm along with raise in temperature by 2 ⁰C had resulted in decrease of yield by 10.9%, 6.2%, 18.31% and 10.5% for Local, Poshilo makai-1, RML-4/17 and Arun-2, respectively. Under same configuration of climatic variables except the maximum and minimum temperature decreased by 2 °C, there was increased in yield of Local, Poshilo makai-1, RML-4/17 and Arun-2 by 10.21%, 18.35%, 22.36% and 15.48%, respectively. Positive impact of increased solar radiation was noticed in simulated yield. When solar radiation was increased by 1MJm⁻²day⁻¹ with increased in temperature by 2^oC and CO₂ concentration by 20 ppm, yield of Local, Poshilo makai-1, RML-4/17 and Arun-2 decreased by 8.98%, 4.94%, 16.54% and 8.47%, respectively. When above configuration

of climate parameters maintained constant with change in Solar radiation by -1 MJm⁻²day-¹, there was even more decreased in yield of Local, Poshilo makai-1, RML-4/17 and Arun-2 by 12.73%, 8.51%, 20.11% and 12.44%, respectively. There was increased in yield of Local, Poshilo makai-1, RML-4/17 and Arun-2 by 17.05%, 21.27%, 28.59% and 19.03%, respectively when temperature decreased by 2 ⁰C and increased solar radiation by 1 MJm⁻ ²day⁻¹ with 20 ppm increased in CO₂ concentration. But, when temperature decreased by 2 ⁰C and decreased solar radiation by 1 MJm⁻²day⁻¹ with 20 ppm increased in CO₂, there was increased in yield by 7.54%, 13.03%, 15.27% and 8.93% for Local, Poshilo makai-1, RML-4/17 and Arun-2, respectively however yield was said to be less increased when solar radiation increased by 1 MJm⁻²day⁻¹.Increase of temperature caused shortening of growth duration and yield loss in spring maize, which can be noticed from the Table 17.

Max Temp(⁰ C)	Min Temp (⁰ C)	CO ₂ Conc (ppm)	Solar Radiation (MJm ⁻² da v ⁻¹)	Varieties	Simulated Grain yield	% yield change (Kg ha ⁻¹)	Growth duration (days)
+0	+0	380	+0	Local	3068	100	94
				Poshilo makai-1	5902	100	114
				RML-4/17	7459	100	116
				Arun-2	3710	100	92
+2	+2	380	+0	Local	2697.69	87.93	88
				Poshilo makai-1	5434.56	92.08	106
				RML-4/17	5966.45	79.99	108
				Arun-2	3274.45	88.26	87
-2	-2	380	+0	Local	3289.20	107.21	101
				Poshilo makai-1	6810.32	115.39	123
				RML-4/17	8977.65	120.36	126
				Arun-2	4181.17	112.70	99
+2	+2	+20	+0	Local	2733.59	89.1	88
				Poshilo makai-1	5536.08	93.8	106
				RML-4/17	6093.26	81.69	108
				Arun-2	3320.45	89.5	87
-2	-2	+20	+0	Local	3381.24	110.21	101
				Poshilo makai-1	6985.02	118.35	123
				RML-4/17	9126.83	122.36	126
				Arun-2	4284.31	115.48	99
+2	+2	+20	+1	Local	2792.49	91.02	88
				Poshilo makai-1	5610.44	95.06	106
				RML-4/17	6225.28	83.46	108
				Arun-2	3395.76	91.53	87
+2	+2	+20	-1	Local	2677.44	87.27	88
				Poshilo makai-1	5399.74	91.49	106
				RML-4/17	5958.99	79.89	108
				Arun-2	3248.48	87.56	87
-2	-2	+20	+1	Local	3591.09	117.05	101
				Poshilo makai-1	7157.36	121.27	123
				RML-4/17	9591.53	128.59	126
				Arun-2	4416.01	119.03	99
-2	-2	+20	-1	Local	3299.32	107.54	101
				Poshilo makai-1	6671.03	113.03	123
				RML-4/17	8597.99	115.27	126
				Arun-2	4041.30	108.93	99

Table 18. Sensitivity analysis of maize cultivars with changes in temperature, solar radiation and CO₂ concentration

5 DISCUSSION

5.1 Dry matter production

Maize planted on earlier sowing date i.e. on 7th April had higher dry matter production (Table 5). Production of dry matter declined with shifting of sowing dates to late spring in all DAS except at 30 DAS and 45 DAS. At 45 DAS, dry matter production seemed to be insignificant different (p < 0.05) to sowing dates. While at 30 DAS, dry matter production was higher for maize planted on later sowing dates. Maize planted on 7th April faced drought during early vegetative stage as a result dry matter production was very low at 30 DAS. This event was in agreement with Cakir (2004) who reported water stress caused dry matter reduction during the pre-flowering period. At the initial stage of early planted maize, level of deficiency was high so life saving irrigation was provided to seedlings. However, mild water stress was also faced by 22nd April planted maize but level was not as critical as on 7th April as there was few rainfall during those period. Consequences of water deficiency can be noticed in their dry matter production. Plant growth is the function of cell division and elongation. Water is essential to maintain cell turgidity and elongation, which further leads to plant growth and dry matter accumulation. At remaining growth stages; 60 DAS, 75 DAS and 90 DAS, maize planted on earlier date had led in dry matter production as lately planted maize were exposed to higher temperature. Planting maize in the spring season is supposed to be most critical for maize growth. Moreover, postponing planting date to late spring added even more critical environmental factors which hindered crop growth rate and their dry matter accumulation. Rate of plant growth is also negatively affected by high temperature (Ritchie and NeSmith, 1991). As suggested by research, maize planted late in the spring faced higher heat stress than planted earlier. The raising temperature had negative impact in biomass production

during both vegetative and reproductive stages. High temperature reduces growth (Weaich *et al.*, 1996). In maize, seedling growth is maximized at a soil temperature of 26 °C and above this temperature, root and shoot mass both decline by 10 % for each degree increase until 35 °C (Walker, 1969). Reduced seedling growth had been suggested to be associated with poor reserve mobilization, with reduced protein synthesis observed in seedlings grown under elevated temperatures (Riley, 1981). Elongation of the first internode and overall shoot growth of maize had been suggested as the most sensitive processes of the vegetative stage to high temperatures (Weaich *et al.*, 1996).

The significant difference among varieties for dry matter production was noticed (Table 5). At early vegetative stages, short durational varieties were seen to be competitive on Poshilo makai-1, which was a long durational variety. Many authors had noted that short durational varieties tend to grow faster as they have short growth period and they need to develop all the structures within short period of time. That is why, they tend to grow faster. The growth of long durational varieties was often slow but in long run long durational varieties produced higher biomass at harvest. Genetic variability among hybrids, open pollinated varieties and inbred lines, its impacts on morphological characteristics and plant vigor, and distinct differences in their field performance is well known. However, except at 30 DAS, long durational maize namely RML-4/17 had the highest dry matter production throughout the growth period among varieties. RML-4/17 is a hybrid variety. Characteristically, RML-4/17 had broad leaf, long time stay green ability and high chlorophyll content as marked by their deep green leaf colour. This hybrid cultivar had strong and thick stem with good root coverage. One of the most important factor for higher dry matter production by hybrid is it's good source and sink relationship. Due to high LAI all round the growth period, its photosynthetic efficiency was also higher and also had higher LAD, which supported this cultivar for higher dry matter.

5.2 Leaf area index and duration

As rainfall occurred on 6th May then continuously rained, maize planted on 7th April, faced water deficit problem for first 30 days after sowing and 14 days for maize planted on 22nd April. However, life saving irrigation rescued plant. Although life had been saved, but maize planted on 7th April had to compromise with its leaf area development as we noticed that leaf area index was the highest for maize planted on 22nd April and 7th May than on 7th April at 30 DAS. But, both cell division and cell expansion were able to recover fully when stress occurred at early phases of leaf development, but in leaves at the final phase of either cell division or cell expansion, these processes did not resume long enough to generate full size leaves (Alves and Setter, 2004). In rest of the growth period i.e. 45 DAS, 60 DAS and 75 DAS, maize planted on 7th April had the highest leaf area index followed by 22nd April and the least for 7th May. Although, for rest of the growth period, water had not been problematic as there was plenty of rainfall. But, raising temperature was much conducive for early senescence of leaf and low leaf area index for lately planted maize. The daily average temperature for 7th May planted crop was 0.5 ^oC higher than daily average temperature for 7th April planted maize. Similarly, daily average temperature for 22nd April planted maize was 0.2 ^oC higher than daily average temperature for 7th April planting. The weather of post-spring and summer season was very hazardous to plant growth. Number of leaves and leaf appearance rate has also been reported as important traits by many researchers for high temperature stress. High temperature reduced leaf number in maize (Hunter et al., 1974). At higher temperature, cell respiration was high so early senescence of late planted maize was not matter of wonder. For lately planted maize (7th May), there were plenty of rainy days, so fertilizer management was very difficult. Split dose was placed at 42 DAS which was 17th June. During those periods rainfall was so continuous that urea might had leached away. For 22nd April and 7th April planted maize,

day for split dose urea placement fall on 2nd June and 18th May, respectively, when there was no rainfall. Nitrogen is one of the important constituent of chloroplast. By leaching of urea, their might had been nitrogen deficiency, which was indicated by pale green leaf. Both higher temperature and leaching of nitrogenous fertilizer might had caused early senescence of leaf and poor leaf growth and development.

Both short durational varieties had competitive LAI with long durational variety i.e. Poshilo makai-1 at early seedling stage (Table 6). Short durational variety have short or no lag vegetative periods and require less growth degree units to meet growth potential so they had higher LAI at initial growth stage (Sharma and Adhikari, 1998). Leaf growth in long durational variety was slow. These varieties attained maximum leaf area index lately, but they maintain their green leaf for longer period of time. However, RML-417 had maintained its higher LAI at all growth period. Its leaf area was broad and green leaf color was persistent for long duration that is why its leaf area duration was high. Hybrid are higher yielder so they need to develop higher LAI as leaves are kitchen of plant body, from where supplements are transported for other structural formation. Arun-2 and Local are short duration varieties that was why these varieties had lower leaf area duration among the tested varieties.

5.3 Grain yield

When maize was planted on 22^{nd} April and late on 7th May, grain yield reduced by 19.94% and 27.98% respectively than grain yield obtained when planted earlier on 7th April (Table 7). Maize grain yield can be described as a function of the rate and duration of dry matter accumulation by the individual kernels multiplied by the number of kernels per plant (Westgate *et al.*, 1997). Anything that affects these yield attributing factors will significantly affect the final yield (Hatfield *et al.*, 1984). Maize was grown in extreme weather condition when temperature normally crosses 32 ^oC during day time. The

temperature was even higher for lately planted maize. Maize planted earlier developed better and had higher yield potential because the vegetative period of its development occurred in the relatively cooler part of the season (Aldrich et al., 1986). Maize yield was negatively correlated with accumulated degrees of daily maximum temperatures above 32 °C during the grain filling period (Dale, 1983). Yield decreases would be higher if higher temperatures was prevailed during the period when the maize ears swell (Southworth et al. 2000). Although there was plenty of rainfall but raising temperature harmful for plant growth which was main drawback for lately planted maize. Lobell and Burke (2010) suggested that increased in temperature of 2 °C would result in a greater reduction in maize yields within sub-Saharan Africa than decreased in precipitation by 20 %. Under high temperature, the number of ovules that were fertilized and developed into grain decreased (Schoper et al., 1987). High temperature during the early stages of kernel development had a detrimental effect on kernel development and final kernel mass due to a reduction in the number and/or size of endosperm cells formed thereby reducing sink capacity (Jones et al., 1984). Heat stress during this stage affected cell division, sugar metabolism and starch biosynthesis, reducing subsequent dry matter accumulation within kernels (Monjardino et al., 2005). Maize kernel weight is the product of the rate and duration of grain filling, both of which are affected by temperature. High temperature during this period is associated with a reduction in the duration of grain filling (Muchow, 1990). Earlier studies showed temperature to increase the growth rate of kernel development (Muchow, 1990); however, this increase was unable to compensate for the reduction in growth duration and this resulted in kernels with less weight (Singletary et al., 1994). High temperature had adverse effect on the growth and development of plants (Noohi et al., 2009) and the yield may be reduced by 101 kg ha⁻¹ day-1 when the temperature reaches up to 35 ^oC during pollination and grain filling stage (Smith, 1996). Because of this reason, number of kernels per row

and 1000 grain weight of seed drastically reduced for 22nd April and 7th May planted maize which consequently reduced yield. This finding was in agreement with Otegui and Melon (1997), who also reported that delayed plantings are generally accompanied by increased temperatures during the growing season, which accelerate crop development and decrease accumulated solar radiation, resulting in less biomass production, kernel set and grain yield. The most significant factors associated with maize yield reduction include shortened life cycle, reduced light interception and increased sterility (Stone, 2001).

Grain yield of maize was also significantly affected due to varieties. RML-4/17 produced higher yield among all varieties followed by Poshilo makai-1. RML-4/17 yielded 5.1 t/ha during winter season (Annual Report of NMRP, 2011-2012), while Arun-2 produced higher grain yield among short durational varieties. Higher yield variation was found in Arun-2. The yield of Arun-2 was 4502 kg ha⁻¹ in Dailekh, while at Lumle yield was 4096 kg/ha (Annual Report of NMRP, 2011-2012). There is no confusion that if there is no any yield penalties, long durational varieties will yield higher than short durational varieties. Leaf area duration, seed fill duration, along with crop duration and biomass production capacity of longer maize duration varieties. Local maize was poor in genetic potential. Improved varieties, which had been tested many time in research trial and released with full confident would certainly yield higher than Local maize.

5.4 Stover yield

Stover yield is the fresh total biomass yield at field during harvest. The stover yield decreased by 0.627% and 12.33% when planted on 22nd April and 7th May than on 7th April planted maize (Table 7). Weaich *et al.* (1996) also observed reduction in the rate of growth of first internode of plants due to high day temperature, thereby reducing the overall shoot growth. Heat stress often decreases root growth, and it had been seen that

root growth had a very narrow optimum temperature range when compared with other growth processes (Porter and Gawith, 1999). Heat stress reduced root number as well as root length and root diameter. Root growth was also decreased, when heat stress occurred during reproductive development, mainly because of decreased carbon partitioning to roots (Batts *et al.*, 1998). Due to poor root growth, there had been poor assimilate supply, thus poor stover yield of plant.

5.5 Harvest index

Harvest index indicates transfer of photosynthetic matters from vegetative organs (source) to seed (silk). Harvest index was found significantly (p< 0.05) different among sowing dates. Early planting date had the highest harvest index. This finding was in agreement with Jasemi *et al.* (2013) who found harvest index was higher for plant sown on 22^{nd} May than 13th July.

5.6 Kernel rows

Kernel rows ear⁻¹ was found significantly different according to sowing dates (Table 8). Maize, which was planted on 7th April produced the highest kernel row per ear and row number decreased in late planting dates. Khan et al (2002) suggested that kernel rows is genetically controlled and have high resistant to environmental control, however Vafa (2013) found that sowing dates have significant (p< 1%) influence in number of kernel rows ear⁻¹ and this finding is in agreement with finding of this research too.

5.7 Kernel numbers row⁻¹

There was a significant effect of sowing dates in kernel number per row (Table 8). The kernel number was higher for early planting. Mhike *et al.* (2012) reported great variation among genotypes for each trait depends on the intensity and severity of stress. A number of factors could be responsible for reduction in number of kernels per row under heat stress, such as reduced pollen viability and receptivity of silk, increased frequency of kernel abortion, decreased cell division in endosperm, reduced sink capacity of developing kernels, reduced starch grain number and overall starch synthesis, increased soluble sugar accumulation, duration of grain filling, kernel development and enzyme activities (Duke and Doehlert, 1996). Heat stressed plants had no detectable levels of cytokinin, leading to seed abortion. (i.e., cessation of dry matter accumulation before initiation of rapid starch deposition in the endosperm) or cease starch deposition prematurely (Cheikh and Jones, 1994).

Kernel number variation was also found according to cultivars. Kernel number ear⁻¹ was the highest for Hybrid (RML-4/17). The reason for best performance for most of the traits for hybrid might be due to added traits, i.e. heterosis, compared to inbred lines under stress.

5.8 Kernel weight

Kernel weight differed significantly with sowing dates (Table 8). Test weight decreased, when maize planting date postponed to 7th May. Suwa *et al.* (2010) reported depression in source-sink activity under high temperatures. Any severe stress that occurs during the grain fill period will cause premature kernel black layer formation and is related to the reduction in or termination of sucrose (photosynthate) availability to the developing kernels (Afuakwa *et al.*, 1984). High night temperatures result in loss of more sugars for respiration and reduce the availability for kernel filling, thereby lowering potential grain yield (Thomison, 2010). Heat stress (Hellewell *et al.*, 1996; Prasad *et al.*, 2006) decreased the seed-filling duration. There may be a slight increase in seed-filling rate but a large decrease in seed-filling duration, thus resulting in smaller seed size (Shipler and Blum, 1986; Tashiro and Wardlaw, 1989). Our finding is in agreement with Killi and Altanbay (2005), who observed that seed weight was significantly affected by the planting dates.
Lower solar radiation was experienced by later planted maize i.e. 7th May as days were cloudy. As solar radiation is a part of photosynthesis, its rate decreased over late planting resulted in less test weight for lately planted maize.

Test weight of maize was significantly different due to varieties. Arun-2 and Local variety had comparatively lower test weight, as these varieties were short durational varieties. These varieties had short seed fill duration and mature faster so test weight was lower. Local maize was genetically small seeded variety. Among the long durational varieties, RML-4/17 was hybrid, while Poshilo makai-1 is synthetic variety. Both of these long durational varieties posses higher test weight among the cultivar. These varieties are genetically improved. Hybrid contained hybrid vigor. Hybrid had longer crop duration, high seed fill duration, longer leaf stay green character, higher leaf area index, thick stem and strong root system. This all attributes helped it to maintain high test weight among the varieties.

5.9 Days to phenological stages

The result suggested that the days for attainment of different phenological stages differed significantly from one planting date to another (Table 9). At early planting condition (7th April), more lengthy days were attained to get the respective pheno-phages like emergence, anthesis, silking and seed fill duration, than when planting was done on 22nd April and 7th May because of relatively less hot environmental condition during earlier planting. Development is mostly described as a function of temperature, suggesting it to be a major driving force and intensity and duration of heat stress not only influenced the transition of one developmental stage to other but also the duration of the developmental stage. Both developmental rate of individual organs such as leaves and the progress of the entire plant through various ontogenetic stages were quantitatively dependent on temperatures (Sinclair, 1994). The higher the temperature the faster is the development and

thus the shorter is the duration of the growth phase. Every crop has certain thermal requirement before reaching phenological stage. At high temperature maize could gain required growing degree days earlier due to which the days required to attain different phenological stages got shorter. The higher temperature increased rate of growing degree days (GDD) accumulation at night (higher respiration rates at night utilized sugars produced during the day, so plants needed to increase photosynthesis to maintain yield). This increased hasten maturity, which reduced the length of the grain-fill period for 7th May planted maize as compared to April planted maize.

Another reason for early senescence of leaves during grain filling period during late planting (7th May) might be leaching of urea along with higher temperature and more rainfall. When there was no uptake of nitrogen from soil then remobilization of nitrogen occurred from leaves to grain. Thus, early senescence of leaf occurred. Frederick and Camberato (1995) also had reported similar finding.

The days to attain different phenological stages significantly differed from varieties to varieties. Days to reach phenological stages is their genetic character. However, occurrence of these phenological characters is driven by environmental factors like temperature, rainfall etc too. The extent of environmental affected on them differed according to varieties. Poshilo makai-1 took higher days to attain knee height stage, anthesis, silking stages followed by RML-4/17, while Local and Arun-2 had similar behavior to days for attainment of phenological stages but they took least days among the varieties compared because these varieties were genetically short durational varieties. Poshilo makai-1 had lower growth duration than RML-4/17, so the seed fill duration was higher for RML-4/17 than Poshilo makai-1.

5.10 Growing degree days

Growing degree days accumulated at knee height and anthesis stage were significantly different while it was non-significant for silking and seed fill duration due to planting dates (Table 10). The difference of GDD acquired at knee height and anthesis stages were very close. The principle of GDD concept is that, temperature controls the developmental rate of plant. Plants require a certain amount of heat to develop from one point in their life cycles to another. The phenological stages of the crop can be predicted using GDD concept. From result, it was clear that, maize tended to accumulate a certain required GDD at particular stages.

5.11 Phenothermal index

The pheno-thermal index for various pheno-phages was significantly different among the sowing dates. Phenolthermal index gradually increased from one pheno-stage to another (Table 11). The pheno-thermal index was high at seed fill duration and gradually decreased in early stages. Likewise, the maize planted lately on 7th May received required growing degree days to attain certain pheno-phase in shorter period than maize planted in early date that was why phenothermal index was higher when planting date was postponed to 7th May and gradually decreased when shifted to early date. This finding is similar to Navaprakaash *et al.* 2007, who reported pheno-phases were attained earlier in summer season and also relatively higher GDD values within short period influenced higher PTI values.

5.12 Heat use efficiency

Heat use efficiency of maize cultivars was found higher in early planting (Table 12). Grain yield of maize cultivars were higher in early planted dates but more or less similar GDD accumulation upto physiological maturity among planting dates caused higher HUE for early planted maize. Arun-2 had less reduction in HUE amongst the

planting time and therefore it can be concluded that it is the best cultivar for both early and late spring planting. The results are in accordance with spring and winter maize as noted by Amgain (2011).

5.13 Model calibration and validation

The model was calibrated comparing the simulated and observed values of days to anthesis, days to physiological maturity and grain yield of all maize varieties planted on 7th April. Calibration was continued until the values compared matches exactly. The adjusted genetic coefficients were used without changing any values for Local, Poshilo makia-1, RML-4/17 and Arun-2 for validation of the model. The model simulated day to anthesis approximately with RMSE of 0.426 days and D-index of 0.998. Similarly RMSE of 0.674 days and D-index of 0.999 for day to physiological maturity was noticed. Model was seen with an agreement of RMSE of 85.287 grain per m² and D-index of 0.993 with observed values for number at maturity (grain/ m²). In addition to this, a good agreement between observed and predicted unit weight at maturity with RMSE of 0.012 g kernel⁻¹ and D-index of 0.854 were found. Simulated yield simulated by model was much similar with observed yield. RMSE and D-index values of grain yield were 54.94 kg per ha and 1.0 respectively.

5.14 Sensitivity analysis

5.14.1 Sensitivity to sowing dates

Varieties responded differently with sowing dates (Table 14). 17th April was seen as a best sowing date for both short durational varieties, further late planting decreased the yield. However for long durational varieties 7th April was the best sowing date for Poshilo makai-1 and 12th April for RML-4/17. Even increasing 10 days from 7th April there was increased in yield of both short durational varieties it might be because of their short growth period which made it escaped possible damage due to higher temperature and shifting sowing date made nearer to rainfall period. However, for long durational varieties, delay planting added even more severe high temperature. Delayed planting was generally accompanied by increased temperature during the growing season, which accelerated crop development and decreased temperature and solar radiation accumulation, resulting in less biomass production, kernel set and grain yield (Otegui and Melon, 1997).

5.14.2 Simulation to weather years

Sensitivity of maize to five different weather years; 2006, 2007, 2008, 2011 (downloaded from www.power.larc.nasa.gov) and 2013 were carried out using CERES Maize model (Table 17). Model predicted yield of maize was decreasing in recent years. The model predicted yield of maize was very high during 2006 and 2007 for all varieties. As during these years, weather condition was very moderate and favorable for maize growth and development. From the result, it can be noticed maximum temperature during those days barely exceed 25 °C, while minimum temperature was around 20 °C, which was very favorable temperature without stressful environment for crop growth. Yield of maize during rest of the years i.e. 2008, 2011 and 2013 had severely decreased because of adverse weather. During these years, temperature records crossed 35 °C and even reached 45 °C and minimum temperature above 25 °C and even reached 30 °C during hot summer which was found adverse for pollen survival .Under this kind of circumstances maize growth and development had been severely affected, which was reflected in their crop phenology and yield parameter as simulated by crop model.

5.14.3 Simulation to climate change parameters

Maize production and productivity are prone to rapid and constant changes due to global warming related environmental changes (Porter 2005; Wahid *et al.*, 2007). Under increased temperature condition (along with elevated CO_2 and increased or decreased solar radiation), the growth duration of maize cultivars was decreased and consequently decreased in grain yield. In contrast, with decrease in minimum and maximum temperature

by 2 0 C there was increased in growth duration, thereby increased grain yield. Temperature is a major determinant factor in crop growth and development. In tropics, high temperature decreased the duration of growth and grain yield, despite high levels of radiation (Muchow *et al.*, 1990). Higher temperatures generally speeds up development of a plant so that it matures sooner (thus reducing the period available for yield production); they often also exacerbate stress on water resources that are essential for crop growth. Temperature affects the duration of crop growth, through its effect on enzymatic reactions in the plant (Gardner *et al.*, 1985). Amgain *et al.* (2006) found decreased in simulated yield of both rice by 34% and wheat by 4% with increments in both maximum and minimum temperature as compared to base scenario. They also reported decreased in yield of rice and wheat by 33% and 3% respectively while increasing 4°C for both maximum and minimum temperature along with an increase in CO₂ concentration by 20 ppm from standard CO₂ concentration of 335 ppm.

Higher CO₂ level in the atmosphere, increase growth and yield, mainly through their effect on the photosynthesis processes of crop which is called CO₂ fertilization (Hendrey and Kimball, 1994).From the table 18, it was clear that CO₂ along increased yield. Free-air carbon enrichment experiment confirm that CO₂ enrichment responses under field conditions consistently increase biomass and yields in the range of 5-15% with CO₂ concentration elevated to 550 ppm (Ainsworth and Long, 2005). The increased CO₂ concentrations and decreased temperature increased growth duration and yield, while increased temperature shortened growth duration and reduced leaf area, biomass and yield (Timsina *et al.*, 1997; Rao and Sinha, 1994; Qureshi and Iglesias, 1994). At elevated CO₂, light intensity positively affects photosynthesis and increased temperature, that promoted both photosynthesis and leaf area (Imai and Murata, 1979). Increase in solar radiation increased grain yield and vise-versa. Provided all factors are non-limiting, cumulative IPAR is strongly related to total biomass accumulation (Edwards *et al.*, 2005) and grain yield. Assimilate production and dry matter accumulation in the plant is positively related to solar radiation interception (Gardner *et al.*, 1985). Both IPAR and Radiation use efficiency determine assimilate production rate, which is critical for growth, kernel set and grain filling (Bonhomme, 2000).

6 SUMMARY AND CONCLUSION

6.1 Summary

A field experiment was conducted during spring season of 2013 at Shivamandir-2, Nawalparasi with an objective to evaluate best agronomic management options by using agro-climatic indices and CSM-CERES-Maize ver. 4.5 for its pertinent use in simulating the growth and yield of maize cultivars under varying sowing dates of various promising maize cultivars. The experiment was conducted using a two factorial Randomized Complete Block Design (RCBD) where treatments were the combination of three sowing dates (7th April, 22nd April and 7th May) and four maize cultivars (Local, Poshilo makai-1, RML-4/17 and Arun-2), making 12 treatments which were replicated thrice. The parameters studied were LAI, LAD, DM accumulation, number of ears ha⁻¹, kernel rows per ear, kernel number per row, thousand grain weight, grain yield, stover yield, harvest index, days to phenological stages, GDD, PTI and HUE. The data were analyzed with suitable ANOVA and model evaluation was also done simultaneously.

Dry matter accumulation was found higher for cultivars planted on 7th April and decreased on later sowing dates at all DAS except at 30 and 45 DAS. At 30 DAS, dry matter accumulated was higher for lately planted maize and at 45 DAS there was no statistically difference between sowing dates for dry matter production. At earlier vegetative stage, 7th April and 22nd April planted maize faced severe drought which was reflected in their dry matter production. However, for other DAS, lately planted maize faced higher temperature which caused lower dry matter production in comparison to earlier sowing dates. Similarly, drought problem had caused lower leaf area during early vegetative stage for maize planted on 7th April. However later on plant resumed their leaf area development and had led on LAI and LAD as plants were facilitated by lower

temperature in comparison to 22nd April and 7th May. Likewise, significantly higher dry matter production, leaf area index and leaf area duration were recorded in RML-4/17. However, at 30 DAS, dry matter production was lower for long duration varieties as short durational varieties tended to grow faster as they have short growth period and they need to develop all the structures within short period of time. Poshilo makai-1 had the second highest rank in dry matter production, LAI and LAD followed by Arun-2 and the lowest for Local cultivars.

Maize planted on 7th April was found superior in yield attributing characters except plant population which was non-significant due to sowing dates. Yield attributes were in decreasing order when sowing dates shifted late to 22nd April and 7th May. Similarly, maize cultivars were found statistically similar in plant population. However, higher yield attributing characters like kernel rows per ear and kernel numbers per row was found higher in RML-4/17 followed by Poshilo makai-1 then Arun-2 and lowest for local cultivar. Statistically, similar and higher weight was found in RML-4/17 and Poshilo makai-1, followed by Arun-2 and the lowest on local cultivar.

As the yield attributing characters were found higher for maize planted on 7th April, grain yield was also high for maize planted on 7th April followed by 22nd April and the lowest for 7th May. In addition to this, statistically similar stover yield was found between maize planted on 7th April and 22nd April while the lowest stover yield was found in maize planted on 7th May. In case of harvest index, maize planted on 7th April had higher harvest index, while remaining two sowing dates had statistically similar harvest index. Grain and stover yields were higher for RML-4/17 followed by Poshilo makai-1 then Arun-2 and Local had lowest values for grain and stover yields. Harvest index was statistically higher and similar for long durational varieties and similar but lower for short durational varieties.

Effect of sowing dates and varieties was found significantly different on days to phenological stages of maize. Maize planted on 7th April had significantly higher days to attain knee height, anthesis, silking and seed fill period, while maize planted on 22nd April and 7th May had statistically similar, but lower days reached to attain phenological stages. However, PTI values were statistically higher for 7th May planted maize as crops were exposed to almost similar GDD at shorter crop duration. From the result it was seen that maize cultivars tended to accumulate required GDD to reach different phenological stages. Likewise, cultivars also had significantly different days to attain phenological stages, GDD accumulation, PTI values. Poshilo makai-1 had the highest calendar days, GDD accumulation at knee height stage, anthesis and silking stages followed by RML-4/17 while both of these short duration varieties had statistically similar but the lowest days attained and GDD accumulation at all stages. However at seed fill period, RML-4/17 had led among the varieties followed by Poshilo makai-1 and both short duration varieties had lowest days attained and GDD accumulation at seed fill duration. PTI values were higher for long durational varieties than short durational varieties. Statistically similar values were found among long durational and among short durational varieties. In addition to this, HUE was higher at earlier planting date. Stable HUE over different planting dates was found in Arun-2 so it can be considered as the best cultivar among the tested cultivars.

DSSAT v4.5 crop model was used to evaluate CSM-CERES-Maize under Shivamandir 2, Nawalparasi. The model calibration was performed for four maize varieties planted on 7th April. Observed anthesis days, physiological maturity and grain yield were used to determine genetic coefficient of all four maize cultivars. The genetic coefficient adjusted were 230 (P1), 0.520 (P2), 940 (P5), 360 (G2), 9.28 (G3) and 38.90 (PHINT) for local maize; 400 (P1), 0.600 (P2), 1130 (P5), 590.9 (G2), 8.38 (G3) and 18.90 (PHINT) for Poshilo makai-1; 380.0 (P1), 0.260 (P2), 1290 (P5), 816.9 (G2), 7.36 (G3) and 8.90 (PHINT) for RML-4/17; 230.0 (P1), 0.520 (P2), 910.0 (P5), 440.0 (G2), 9.88 (G3) and 38.90 (PHINT) for Arun-2.

Model validation was accomplished using eight treatments (varieties planted on 22nd April and 7th May). Days to anthesis was well simulated with RMSE of 0.426 and D-index of 0.998. Similarly, days to physiological maturity was simulated with RMSE of 0.674 days and D-index of 0.999. Agreement between simulated and observed number of grain m⁻² at maturity with RMSE of 85.287 grains per m² and D-index of 0.993 was found satisfactory. In addition to this, a good agreement between observed and predicted unit weight at maturity with RMSE of 0.012 g kernel⁻¹ and D-index of 0.854 was found. The grain yield was simulated with RMSE of 54.94 kg per ha and D-index of 1.0 against observed values of grain yield for all eight treatments.

The model was found sensitive to sowing dates, no water stress condition, cultivars, weather years and climate change parameter as determined by sensitivity analysis. Suitable sowing dates of 17th April, 7th April, 12th April and 17th April for Local cultivar, Poshilo makai-1, RML-4/17 and Arun-2 respectively were determined on the basis of their respective simulated yield.

Yield simulation of tested maize cultivars was done to know how much yield reduction had there been due to early vegetative drought stress. Due to early vegetative drought stress there had been 5.824%, 10.664%, 15.419% and 6.222% yield reduction in Local, Poshilo makai-1, RML-4/17 and Arun-2 respectively as predicted by the model.

The genetic Coefficient values were 250 (P1), 0.70 (P2), 800(P5), 400.0 (G2), 12.5 (G3) and 70.0 (PHINT) for Deuti; 283.7(P1), 0.50 (P2), 869.5 (P5), 776.2 (G2), 8.71 (G3) and 45.0 (PHINT) for Rampur Composite; 300.0(P1), 0.50 (P2), 880.0 (P5), 718.3 (G2), 8.75 (G3) and 45.0 (PHINT) for Upahar and 232.0 (P1), 0.50 (P2), 785.0 (P5), 678.2 (G2), 8.93 (G3) and 48.0 (PHINT) for Arun-4 were used from previous thesis. Among these

varieties, Rampur composite gave the highest yield (6493 kg ha⁻¹) whereas Upahar had the second highest yield of 6079 kg ha⁻¹. While Deuti and Arun-4 had approximately similar, but comparatively lower simulated yield of 4234 kg ha⁻¹ and 4221 kg ha⁻¹ respectively.

The simulated grain yield of maize was found higher during early weather years i.e., 2006 and 2007. But yield, days to anthesis and physiological maturity had decreased in 2008 and 2011.

The model was also sensitive to change in temperature, solar radiation and CO_2 concentration. It was also noticed that decrease in temperature, increase in solar radiation and CO_2 concentration, any one of this can increase the yield of maize and vice-versa.

6.2 Conclusion

Maize cultivation in late spring season is very risky. However, maize planted on 7th April had higher growth rate, higher yield and it's attributing characters as it was facilitated by relatively favorable temperature. Although, there was lower reduction in yield of short durational varieties due to late planting but, because of its lower yield, farmer can be suggested to grow longer durational varieties as these varieties were genetically high yielder even in post-planting dates. Specially, Hybrid (RML-4/17) produced higher yield among the tested cultivars, so that farmers ranked them highly preferred.

Although temperature during research period was increasing with progress of day, days to attain different phenological stages decreased with delay in sowing dates. At all sowing dates, maize tried to accumulated statistically similar GDD. Due to statistically similar GDD but decreasing days to attain different phenological stages under delayed planting, higher PTI value was noticed with delay in planting. Similarly HUE was found higher in early sowing date. Arun-2 had lower reduction in HUE so it can be considered stable and best cultivar among the tested varieties. Due to changing climate, there has been great negative impact of increasing temperature in spring maize. Temperature during post spring season seems to be beyond optimum threshold level. Even 2^oC rise in temperature than present condition, model predicted higher yield decline in maize. To tackle with changing climatic situation, model had been used to find suitable sowing dates for cultivars under different agro-climatic situation.

Many works can be done in the field of climate change using simulation modeling. For this extensive and repetitive field work and quality data sets should be generated to make model work properly and accurately.

LITERATURE CITED

- Adhikari, D.P. 2004. Landslide hazard to Petku Village, Sindhupalchok, central Nepal and its causes. In Proceedings Geo-environment and Geotechnics 14: 369-74
- Afuakwa, J.J., R.K. Crookston and R.J. Jones. 1984. Effect of Temperature and Sucrose Availability on Kernel Black Layer Formation in Maize. Crop Sci. 24: 285-288.
- Ainsworth, E.A. and S.P. Long. 2005. What have we learned from fifteen years of Free Air Carbon Dioxide Enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂. New Phytol. 165: 351-372.
- Alagarswamy, G. and J.T. Ritchie. 1991. Phasic development in CERES-Sorghum model. In: T. Hodeges (ed.) Predicting crop phenology. CRC Press, Boca Raton, FL. pp. 143-152.
- Alan, M., B.R. Regmi. 2004. Adverse Impacts of Climate Change on Development of Nepal: Integrating Adaptation into Policies and Activities, Capacity Strengthening of Least Developed Countries for Adaptation to Climate Change (CLACC).
- Aldrich, S.R., W.O. Scott and E.R. Leng. 1975. Modern corn production.2nd ed., A &L Publications, Champaign, III. pp. 103-117.
- Aldrich, S.R., W.O. Scott and R.G. Hoeft. 1986. Modern corn production. A and Publ., Champaign.
- Alves, A.A.C. and T. L. Settter. 2004. Response of cassava leaf area expansion to water deficit: Cell proliferation, cell expansion and delayed development. Ann. Bot. (London) 94: 605-613.
- Amgain, L.P. 2011. Accumulated heat unit and phenology of different maize cultivars as influenced by planting time and seasons. J Inst. Agric. Anim. Sci. 31&32: 145-49.

- Amgain, L.P., N.R. Devkota, J. Timsina and Bijay-Singh. 2006. Effect of climate change and CO₂ concentration on growth and yield of rice and wheat in Punjab: simulations using CSM-CERES-Rice and CSM-CERES-Wheat models. J. Inst. Agric. Anim. Sci. 27: 103-110.
- Anderson, S.R., M.J. Lauer, J.B.Schoper and R.M. Shibles. 2004. Pollination timing effects on kernel set and silking receptivity in four maize hybrids. Crop Sci. 44: 464-473.
- Baidhya, SK. Shrestha, ML. and Sheikh, MM. 2008. Trends in daily climatic extremes of temperature and precipitation in Nepal. Vol 5 (1), Journal of Hydrology and Meterology, Society of Hydrologists and Meterologists, Nepal.
- Bajwa, M.S., A. Akhtar, M.R. Hussain and M.B. Raja. 1987. Effect of irrigation frequencies and nitrogen rates on the protein contents of maize. Pakistan Journal of Agricultural Research 8: 325-329.
- Balasubramanian, V., M. Sie, R.J. Hijmans and K. Otsuka. 2007. Increasing rice production in sub-Saharan Africa, Challenges and opportunities. Adv Agron. 94: 55-133.
- Banziger, M., G.O. Edmeades, D. Beck and M. Bellon. 2000. Breeding for drought and nitrogen stress tolerance in maize: From theory to practice. CIMMYT, Mexico.
- Bassetti, P. and M.E. Westgate. 1994. Floral asynchrony and kernel set in maize quantified by image analysis. Agronomy Journal. 86:699-703.
- Bassetti, P. and M.E. Westgate. 1993. Emergence, elongation and senescence of maize silks. Crop Sci. 33: 271-275.
- Battisti, D. S. and R.L. Naylor. 2009. Historical warnings of future food Insecurity with unprecedented seasonal heat. Science 323: 240-244.

- Batts, G.R., R.H. Ellis, J.I.L. Morison, P.N. Nkemka, P.J. Gregory and P. Hadley. 1998.
 Yield and partitioning of crops of contrasting cultivars of winter wheat in response to CO₂ and temperature in field studies using temperature gradient tunnels. J. Agric. Sci. 130: 17-27.
- Bhusal, T N, Amgain LP and Devkota NR 2009. Evaluation of CSM-CERES-Maize model and sensitivity analysis of open pollinated varieties of maize at Rampur Chitwan. J Inst. Agric. Anim. Sci. 30: 63-72.
- Bhusal, T. N., L. P. Amgain and N. R. Devkota. 2009. Evaluation of CSM-CERES-Maize model and sensitivity analysis of open pollinated varieties of maize at Rampur, Chitwan. J Inst. Agric. Anim. Sci. 30: 63-72.
- Bolanos, J. and G.O. Edmeades. 1993. Eight cycles of selection for drought tolerance in lowland tropical maize.I. Responses in grain yield, biomass, and radiation utilization.Field Crops Research, 31:233-252.
- Bolanos, J. and G.O. Edmeades. 1996. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Research, 48:65-80.
- Bonhomme, R. 2000. Beware of comparing RUE values calculated from PAR vs. solar radiation or absorbed vs. intercepted radiation. Field Crops Res. 68: 247-252.
- Boomsma, C.R. and T.J. Vyn. 2008. Maize drought tolerance: Potential improvements through arbuscular mycorrhizal symbiosis. Field Crops research. 108: 14-31.
- Boote, K.J., J.W. Jones, G. Hoogenboom and N.B. Pickering. 1998. The CROPGRO model for grain legumes. In: G. Y. Tsuji, G. Hoogenboom, and P.K. Thornton (ed.) Understanding options for agricultural production. Kluwer Academic Publ., Dordrecht, the Netherlands. pp. 99-128.

- Borrell, A.K., G.L. Hammer and R.G. Henzel. 2000. Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci. 40: 1037–1048.
- Bremner, J.M. 1965.Total nitrogen. In: C.A. Black (ed) Methods of soil analysis. Part 2: Chemical and microbial properties. Number 9 in series Agronomy. Agron. J. pp. 1049-1178.
- Bressani, R. 1995. Quality Protein Maize. In: B. A. Larkins and E. T. Mertz (eds). Proceedings of the International Symposium on Quality Protein Maize. Sete Lagaos, Brazil. pp. 41-63.
- Brown, R. A. and N.J. Rosenberg. 1997. Sensitivity of crop yield and water use to change in a range of climate factors and CO₂ concentrations: A simulation study applying EPIC to the central USA. Agric. For. Meteorol. 83: 171-203
- Bruce, W.B., G.O. Edmeades and T.C. Baker. 2002. Molecular and Physiological approaches to maize improvement for drought tolerance. Journal for Experimental Botany 53: 13-25.
- Cakir, R. 2004. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research 89: 1-6.
- Carberry, P.S., R.C. Muchow and R.L. McCown. 1989. Testing the CERES-Maize simulation model in a semi-arid tropical environment. Field Crops Res. 20: 297-315.
- Cheeroo-Nayamuth, F.C., M.J. Robertson, M.K. Wegener and A.R.H. Nayamuth. 2000. Using a simulation model to assess potential and attainable sugarcane yield in Mauritius. Field Crops Research 66: 225-243.
- Cheikh, N. and R.J. Jones. 1994. Disruption of maize kernel growth and development by heat stress (role of cytokinin/abscisic acid balance). Plant Physiol. 106: 45-51.

- Cirilo, A. G. and F.H. Andrade. 1994. Sowing date and maize productivity: I. Crop growth and dry matter partitioning. Crop Sci. 34: 1039-1043.
- Cirilo, A.G. and F.H. Andrade. 1996. Sowing date and kernel weight in maize. Crop Science 36: 325-331.
- Commuri, P.D. and R.J. Jones. 2001. High temperatures during endosperm cell division in maize: A genotypic comparison under In vitro and field conditions. Crop Sci. 41: 1122-1130.
- Dale, R.F. 1983. Temperature perturbations in the Midwestern and south-eastern United States important for crop production. In: C.D. Raper and P.J. Kramer (Eds.) Crop Reactions to water and temperature stresses in Humid and temperature climates. Westview Press, Colorado, USA.pp. 21-32.
- Day, P.R. 1965. Particle fraction and particle size analysis. In: C.A. Black(ed.) Methods of soil analysis. Part I. Agronomy No .9. Agron.J., Madison,WI.
- Daynard, T.B., J.W. Tanner and D.J. Hume. 1969. Contribution of stalk soluble carbohydrates to grain yield in corn (Zea mays L.). Crop Science 9: 831-834.
- Dogan, K., G.A. Clark, D.H. Rogers, V. Martin and R.L. Vanderlip. 2006. On-farm scheduling studies and CERES-Maize simulation of irrigated corn. Applied Eng. Agric. 22: 509-516.
- Doorenbos, J. and A. K. Kassam. 1979. Yield response to water. Irrigation and Drainage Paper 33. FAO, United Nations, Rome 176p.
- Duke, E.R. and D.C. Dochlert. 1996. Effects of heat stress on enzyme activities and transcription levels in developing maize kernels growth in cultura. Environ. Exp. Bot. 36: 199-208.
- Duvick, D.N. 1992. Genetic contributions to advances in yield of U.S. maize. Maydica. 37: 69-79.

- Easterling, W., P. Aggarwal, P. Batima, K. Brander, L. Erda, M. Howden, A. Kirilenko, J. Morton, J.-F. Soussana, S. Schmidhuber, and F. Tubiello, 2007: Food, fibre and forest products. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson, Eds. Cambridge University Press. pp. 273-313.
- Edmeades, G.O., J. Bolanos, A. Elings, J.M. Ribaut, M. Banziger and M.E. Westgate.2000. The role and regulation of the anthesis-silking interval in maize. In: M.E.Westgate and K. Boote (ed.). Physiology and modeling kernel set in maize. CropScience Society of America, Madison, WI. pp. 43-73.
- Edwards, J.T., L.C. Purcell and E. D. Vories. 2005. Light interception and yield potential of short-season maize (Zea mays L.) hybrids in the midsouth. Agron. J. 97: 225-234.
- Edwards, J.T., L.C. Purcell and E.D. Vories. 2005. Light interception and yield potential of short-season maize (Zea mays L.) hybrids in the Midsouth. Agronomy Journal. 97:225-234.
- FAO. 2002. World Agriculture: Towards 2015/2030: Summary Report. Rome. 2004a.
 Payment Schemes for Environmental Services in Watersheds. Regional Forum, 9– 12 June 2003 in Arequipa, Peru. Land and Water Discussion Paper 3. Rome.

FAOSTAT. 2005. Database, Accessed November 2005. FAO, Rome, Italy.

Farre, I. and J. M. Faci. 2006. Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agricultural Water Management 83:135-143.

field-grown Sorghum bicolor (L.) Moench. Aust. J. Agric. Res. 41: 329–337.

- Fokar, M., A. Blum and H. T. Nguyen. 1998. Heat tolerance in spring wheat.II. Grain filling. Euphytica. 104: 9–15.
- Fraisse, C.W., K.A. Suddeth and N.R. Kithchen. 2001. Calibration of the CERES-Maize model for simulating site-specific crop development and yield on claypan soils. Applied Eng. Agric. 17: 547-556.
- Frederick, J.R and J.J. Camberato. 1995. Water and nitrogen effects on winter wheat in the southeastern coastal plain: II- Physiological responses. Agron. J. 4: 241-248.
- Gardner, F.P., R.B. Pearce and R.L. Mitchell. 1985. Physiology of crop plants. Lowa State University Press. Ames.
- Graham, G.G., R.P. Placko and W.C. Maclean. 1995. Nutritional value of normal, opaque-2 and sugary-2 opaque-2 maize hybrids for infants and children. J. Nutr. 110: 1070-1074.
- Grant, R.F., B.S. Jackson, J.R. Kiniry and G.F. Arkin. 1989. Water deficit timing effects on yield components in maize. Agronomy Journal 81: 61-65.
- Gupta, H.S., V. Mahajan, P.K. Agarwal, G.S. Bist and M.C. Pant. 2010. Vivek QPM9 maize: a hybrid for Himalayan hills and Peninsular region. Indian Farming 59 (11): 10-12.
- Gurung, D.B., J. Shrestha and K.P. Dhakal. 2010. Evaluation of maize genotypes for high temperature tolerance in terai region of Nepal. International Journal of applied and basic science. Vol.1(1). pp. 16-24.
- Hatfield, A.L., G.R. Benoit and J.L. Ranland. 1984. The growth and yield of corn. IV. Environmental effects on grain yield components of mature ears. Agron. J. 57:293-295.

- Hellewell, K.B., D.D. Stuthman, A.H. Markhart and J.E. Erwin. 1996. Day and night temperature effects during grain filling in oat. Crop Sci. 36: 624–628.
- Hendrey, G.R. and B.A. Kimball. 1994. The FACE program. Agric. For. Meteorol. 70:3-14.(doi:10:1016/0168-1923(94)90044-2.)
- Herrero, M.P. and R.R. Johnson. 1981. Drought stress and its effects on maize reproductive systems. Crop Science.21:105-110.
- Hesketh, J.D. and I.J. Warrington. 1989. Corn growth response temperature: rate and duration of leaf emergence. Agron. J.81: 696-701.
- Hicks, D.R., J.D. Harrington and J.H. Mcgahen. 1993. Maximizing the advantages of early corn planting. National Corn Handbook, Crop Management. Purdue University Cooperative Extension Service. West Lafayette, Indiana. NCH-35
- Hoogenboom, G., P.W. Wilkens, P.K. Thornton, J.W. Jones, L.A. Hunt and D.T. Imamura.
 1999. Decision support system for agrotechnology transfer V3.5. In: G.
 Hoogenboom, P.W. Wilkens, G. Y. Tsuji (eds) DSSAT version 3, vol. 4.
 University of Hawaii, Honolulu, HI. pp. 1-36.
- Hook, J.E. 1994. Using crop models to plan water withdrawals for irrigation in drought years. Agric. Syst. 45: 271-289.
- Hunter, R.B., L.A. Hunt and L.W. Kannenberg. 1974. Photoperiod and temperature effects on corn. Can. J. Plant Sci. 54: 71-78.
- Hunter, R.B., M. Tollenar and C.M. Breuer. 1977. Effects of photoperiod and temperature on vegetative and reproductive growth of a maize (*Zea mays*) hybrid. Can. J. Plant Sci. 57: 1127-1133.
- Imai, K. and Y. Murata. 1979. Effect of carbon dioxide concentration on growth and dry matter partitioning of crop plants. VII. Influence of light intensity and temperature

on the effects of carbon dioxide environment in some C_3 and C_4 species. Jpn. J. Crop Sci. 48: 409-417.

- International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT). 1993. The IBSNAT Decade. Department of Agronomy and soil Science, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, Hawaii.
- IPCC 2007. Climate Change 2007: Climate Change Impacts, Adaptation and Vulnerability. Summary for Policy Makers. Inter-Governmental Panel on Climate Change.
- Jackson, M.L. 1973. Soil Chemical Analysis, Prentice Hall of India Pvt Ltd, New Dehli.
- Jamieson, P.D., R.J. Martin and G.S. Francis. 1995. Drought influences on grain yield of barley, wheat, and maize. New Zealand Journal of Crop and Horticultural Science. 23: 55-66.
- Jasemi, M., F. Darabi, R. Naseri, H. Naserirad and S. Bazdar. 2013. Effect of Planting Date and Nitrogen Fertilizer Application on Grain Yield and Yield Components in Maize (SC 704). American-Eurasian J. Agric. & Environ. Sci. 13 (7): 914-919.
- Jinghua, W. and L. Erda. 1996. The impacts of potential climate change and climate variability on simulated maize production in China. Water Air Soil Pollut. 92:75-85.
- Jones, J.W. and J.R. Kiniry. 1986. CERES-Maize. A simulation model of maize growth and development. Texas A and M Univ. Press, College Station.
- Jones, J.W., G.Y. Tsuji, G. Hoogenboom, L.A. Hunt, P.K. Thornton, P.W. Wilkens, D.T. Imamura, W. T. Bowen and U. Singh. 1998. Decision support system for agrotechnolgy transfer; DSSAT v3. In: G.Y. Tsuji, G. Hoogenboom. P.K. Thornton (eds) Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht, the Netherlands. pp. 157-177.

- Jones, P.G. and P.K. Thornton. 2003. The potential impacts of climate change on maize production in Africa and Latin America in 2055.Global Environ.Change. 13:51-59.
- Jones, R.J., S. Quatter and R.K. Crookston. 1984. Thermal environment during endosperm division and grain filling in maize: effects of kernel growth and development in Vitro. Crop Sci. 24: 133-137.
- Jordan D.R., Y. Tao, I.D. Godwin, R.G. Henzell, M. Cooper and C.L. McIntyre. 2003. Prediction of hybrid performance in grain sorghum using RFLP markers. Theor Appl Genetic. 106:559–567.
- Khan, N., M. Qasim, F. Ahmad, R. Khanzada and B. Khan. 2002. Effects of sowing date on yield of maize under Agroclimatic condition of Kaghan Valley. Asian Journal of Plant Science 2: 140-147.
- Khush, G.S. 1999. Green revolution: Preparing for the 21st century. Genome. 42: 646-655.
- Killi, F. and S. G. Altunbay. 2005. Seed yield, oil content and yield components of confection and oil sunflower cultivars (Helianthesis annus L) planted on different dates. Int. J. Agri. Biol. 7: 21-4.
- Kiziloglu, F.M., U. Sahin, Y. Kuslu and T. Tune. 2009. Determining water-yield relationship, water use efficiency, crop and pan coefficients for silage maize in a semiarid region. Irrigation Science 27: 129-137.
- Lal, R. 2001. Future climate change: Implications for India Summer monsoon and its variability Current Science 81: 1205-1207.
- Lamsal, A. and L. P. Amgain. 2010. Simulation of growth and yield of rice under varied agronomic management and changing climatic scenarios by using DSSAT ver. 4.0 Crop Model in Chitwan, Nepal. Indian Journal of Hill Agriculture Research 1 (2): 26-35.

- Larkindale, J., M. Mishkind and E. Vierling. 2005. Plant Responses to High Temperature. In: M.A. Jenk, P. M. Hasegawa (eds) Plant Abiotic stresses. Oxford, Blackwell, UK. pp.100-144.
- Lobell, D.B. and M.B. Burke. 2010. On the use of statistical models to predict crop yield responses to climate change. Agric. Forest Metero. 150: 1443-145
- Loffler, C.M., J. Wei, T. Fast, J. Gogerty, S. Langton, M. Bergman, B. Merrill and M. Cooper. 2005. Classification of maize environments using crop simulation and geographic information systems. Crop Sci. 45: 1708-1716.
- Lorens, G.F., J.M. Bennett and L.B. Loggale. 1987. Differences in drought resistance between two corn hybrids.I. Water relations and root length density. Agronomy Journal 79: 802-807.
- Maddonni, G.A., M.E. Otegui and R.Bonhomme. 2004. Grain yield components in maize:II. Post silking growth and kernel weight.Field Crops Res. 56: 257-264.
 maize: Effects of carbohydrate storage and metabolism. Aust. J. Plant Phys. 21: 829–841.
- Miao, Y., D.J. Mulla, W.D. Batchelor, J.O. Paz, P.C. Robert and M. Wiebers. 2006. Evaluating management zone optional nitrogen rates with a crop growth model. Agron. J. 98: 545-553.
- Mishra, T. N., K.D. Sayre, M.M. Palikhe and G.B. Thapa. Arun evaluation trail. The 8th Summer Crops Workshop, Rampur, Nepal.
- MoAC. 2009/10. Statistical Information on Nepalese agriculture (2009/2010).
 Agribusiness Promotion and Statistics Division, Singh Darbar, Kathmandu, Nepal.
 MoAC. 2012. Ministry of Agriculture and Co-operatives, HMG/N, Singhadarbar, Kathmandu Nepal. (In) Agriculture Dairy of Nepal.

- MoAD, 2011. Statistical Information on Nepalese Agriculture. Government of Nepal. Ministry of Agriculture and Cooperatives. Agri.Business Promotion and Statistics Division. Singh Durbar, Kathmandu, Nepal.
- MoAD. 2012. Statistical Information on Nepalese Agriculture. Government of Nepal. Ministry of Agriculture and Cooperatives. Agri.Business Promotion and Statistics Division. Singh Durbar, Kathmandu, Nepal.
- Monjardino, P., A.G. Smith and R.J. Jones. 2005. Heat stress effects on protein accumulation of maize endosperm. Crop Sci 45: 1203-1210.
- Moser, S.B., B. Feil, S. Jampatong and P. Stamp. 2006. Effects of pre-anthesis drought, nitrogen fertilizer rate and variety on grain yield, yield components and harvest index of tropical maize, Agricultural Water Management 81: 41-58.
- Muchow, R. 1990. Effect of high temperature on the rate and duration of grain growth in field-grown Sorghum bicolor (L.) Moench. Aust. J. Agric. Res. 41: 329–337.
- Muchow, R. C., T.R. Sinclair and J.M. Bennett. 1990. Temperature and solar radiation effects on potential maize yields across locations. Agron. J. 82: 338-342.
- NeSmith, D.S. and J.T. Ritchie. 1991. Temperature and crop development. In: R.J. Hanks and J.T. Ritchie (ed.) Agronomy Monogram. pp. 5-29.
- NMRP, 2009. Annual Report, NARC, National Maize Research Program, Rampur, Chitwan, Nepal.
- NMRP. 2012. Annual report 2011/2012. NARC, National Maize Research Program, Rampur, Chitwan.
- Noohi, K., E. Fatahi and G.H.A. Kamali. 2009. Heat stress effects analysis on wheat crop in southern provinces. Geophysical Res Abstracts 11: 44-45.

- Oseni, T.O. and M.T. Masarirambi. 2011. Effect of climate change on maize (zea mays) production and food security in Swaziland. American-Eurasian J. Agric. & Environ. Sci. 11 (3): 385-391.
- Otegui, M. 1995. Prolificacy and grain yield components in modern Argentinian maize hybrids. Maydica 40: 371-376.
- Otegui, M.E. and S. Melon. 1997. Kernel set and flower synchrony within the ear of maize: I. Sowing date effects. Crop Science 37: 441-447.
- Paes, M.C.D and M.H. Bicudo. 1995. Nutritional perspective of quality protein maize. In: Proceedings of the International Symposium on Quality Protein Maize. Sete Lagaos, Brazil. pp. 65-78.
- Palta, J.A., T. Kobata, N.C. Turner and I.R. Fillery. 1994. Remobilization of carbon and nitrogen in wheat as influenced by post-anthesis water deficits. Crop Sci. 34: 118– 124.
- Pandey, R.K., J.W. Maranville and A. Admou. 2000. Deficit irrigation and nitrogen effects on maize in a Sahelian environment. I. Grain yield and yield components. Agricultural Water Management 46: 1-13.
- Passioura, J.B. 1996. Simulation models: science, snake oil, education, or engineering? Agron J. 88: 690–694.
- Pokharel, P. 2011. Class, Caste and Climate Change: A Vulnerability Analysis in Nepal.Pesticide Action Network, Asia.
- Porter, J.R. and M. Gawith. 1999. Temperature and the growth and development of wheat: A review. Eur. J. Agron. 10: 23–36.
- Porter, J.R. and M. Gawith. 1999. Temperature and the growth and development of wheat: A review. Eur. J. Agron. 10: 23–36.

- Prasad, P.V.V., K.J. Boote, J.M.G. Thomas, L.H. Allen and D.W. Gorbet. 2006. Influence of soil temperature on seedling emergence and early growth of peanut cultivars in field conditions. J. Agron. Crop Sci. 192: 168–177.
- Pswarayi, A. and B.S. Vivek. 2007. Combining ability amongst CIMMYT's early maturing maize (Zea mays L.) germplasm under stress and non-stress conditions and identification of testers. Eupytica.
- Rajcan, I. and M. Tollenaar. 1999. Source:sink ratio and leaf senescence in maize: I. Dry matter accumulation and partitioning during grain filling. Field Crops Research. 60: 245-253.
- Rajput, R.P. 1980. Response of soybean crop to climate and soil environments. Ph D thesis. Indian Agricultural Research Institute, Pusa, New Delhi.
- Rangaseamy, R.1995. A text book of agricultural statistics. K.P. Gupta for New Age International Limited, New Dehli.
- Reddy, T.Y. and G.H. Sankara Reddi.2005.Principles of agronomy. Kalyani Publishers, Ludhiana,India.
- Ribaut, J. M., J. Betran, P. Monneveux and T. Setter. 2009. Drought tolerance in maize. In: J. L.Bennetzen and S. C. Hake (eds.) Handbook of Maize. Springer, New York. pp. 311–344.
- Rijal, T. R., K. Adhikari and L. B. Bishowkarma. 1998. Evaluation of open pollinated varieties for baby corn production under three levels of plant density and nitrogen.
 Proceedings of the 22nd National Summer Crops Workshop on Maize Research in Nepal. 27-29 March 2000.
- Riley, G.J.P. 1981. Effect of high temperature on the germination of maize (*Zea mays L.*). Planta 151: 68-74.

- Roy, R.K and R.S. Tripathi. 1987. Effect of irrigation and fertilizers on yield.Indian Journal of Agronomy 2: 314-318.
- Sapkota, A., L.P. Amgain and N.R. Devkota. 2007. Use of CSM-CERES-Maize to estimate potential yield and analysis yield gaps of winter maize cultivars at Rampur, Chitwan. Paper accepted for IAAS J. vol.28.
- Sapkota, A., L.P. Amgain, N.R. Devkota and J. Timsina. 2008. Evaluation of CSM-CERES-Maize model, estimation of potential yield and yield gap analysis of winter maize at Rampur, Chitwan. J. Inst. Agric. Anim. Sci. 29: 27-32.
- Schoper, J.B., R. J. Lambert, B.L. Vasilas and M. E. Westgate. 1987. Plant factors controlling seed set in maize: the influence of silk, pollen, and ear-leaf water status and tassel heat treatment at pollination. Plant Physiol. 83: 121-125.
- Schoper, J.B., R.J. Lambert and B. L. Vasilas. 1987. Pollen viability, pollen shedding, and combining ability for tassel heat tolerance in maize. Crop Sci. 27: 27-31.
- Schoper, J.B., R.J. Lambert, B.L. Vasilas and M.E. Westgate. 1987. Plant factors controlling seed set in maize: the influence of silk, pollen, and ear-leaf water status and tassel heat treatment at pollination. Plant Physiol. 83: 121-125.
- Schultze, R. E., G.A. Kiker and R.P. Kunz. 1996. Global climate change and agricultural productivity in Southern Africa: thought for food and food for thought. In: T. E. Downing (ed.) Climate change and world food security. North-Atlantic Treaty Organization ASI Series, Vol. 137. Springer- Verlag, Berlin. pp. 421-447
- Schussler, J.R. and M.E. Westgate. 1995. Assimilate flux determines kernel set at low water potential in maize. Crop science. 35:1074-1080.
- Sen, C. K. and B. R. Sthapit.1982. Study on intercropping of finger millet with maize in the western hills of Nepal. IAAS. J. 3(I): 37-42.

- Sharma, D. and K. Adhikari. 1998. Morphological studies on early and full season maize. In: Maize Research in Nepal, Proceedings of 21st National Summer Crop Workshop, March 17-19, 1998, RARS, Parwanipur, Bara. pp. 93-104.
- Shaw, R.H. 1974. A weighted moisture-stress index for corn in lowa State Journal of Research 49: 101-114.
- Shipler, L. and A. Blum. 1986. Differential reaction of wheat cultivars to hot environments. Euphytica. 35: 483-492.
- Shrestha, A. B., C.P. Wake, P.A. Mayewski and J.E. Dibb. 1999. Maximum Temperature Trends in the Himalaya and its Vicinity: An Analysis Based on Temperature Records from Nepal for the Period 1971 – 94. Journal of Climate 12(9): 2775-2786.
- Sinclair, T.R. 1994. Limits to crop yield. In K.J. Boote et al. (eds) Physiology and determination of yield. ASA, Madison. pp. 509-532.
- Singh, C. 2002. Modern techniques of raising field crops. Oxford and IBH Publishing Co. Pvt. Ltd. New Dehli, India.
- Singletary, G.W., R. Banisadr and P.L. Keeling. 1994. Heat stress during grain filling in maize: effects of carbohydrate storage and metabolism. Aust. J. Plant Phys. 21: 829-841.
- Southworth, J., J.C. Randolph, M. Habeck, O. C. Doering and R. A. Pfeifer. 2000. Consequences of future climate change and changing climate variability on maize yields in the midwestern Unitied States. Agriculture, Ecosystems and Environment 82: 139-158
- Stone, P. 2001. The effects of heat stress on cereal yield and quality. In: A.S. Basara, (eds) Crop Responses and Adaptations to Temperature Stress. Food Products Press, Binghamton, New York. pp. 243-291.

- Suwa, R. and P.K. Mohapatra. 2010. High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (*Zea mays* L.) genotypes. Plant Physiol. Biochem. 48: 124-130.
- Synnott, P. 2012. Climate Change, Agriculture, & Food Security in Nepal. In: report prepared for Mercy Corps Nepal.
- Taylor, H.M. and P.S. Blackett. 1982. Soyabean and maize yield as affected by row spacing, planting dates and seasonal water supply. Agron. J. 80: 930-935.
- Tewolde, H., C. J. Fernandez and C. A. Erickson. 2006. Wheat cultivars adapted 1230 to post-heading high temperature stress. J. Agron. Crop Sci. 192: 111–120.
- Thapa, G. B. 1995. Projections and Policy Implications of Food Supply and Demand in Nepal to the Year 2020. Research Report Series No. 30, Winrock International Policy Analysis in Agriculture and Related Resource Management, Kathmandu, Nepal: APROSC.
- Thapa, R.B. and D.R. Dangol. 1988. A preliminary survey of weed flora at IAAS and its vicinity. In:F.P. Neupane (ed) IAAS Research Report (1985-1991).Institute of Agriculture and Animal Science, Rampur, Chitwan, Nepal. pp. 59-65.
- Thavaprakaash, N., R. Jagannathan, K. Velayudham and L. Gurusamy. 2007. Seasonal influence on Phenology and Accumulated Heat Units in Relation to Yield of Baby Corn.International Journal of Agricultural Research 2 (9): 826-831.
- Thomison, P. 2010. Has cool weather hurt corn yield potential? In: C.O.R.N Newsletter. The Ohio state university.
- Thorp, K.R., W.D. Batchelor, J.O. Paz, B.L. Steward and P.C. Caragea. 2006. Methodology to link production and environmental risks of precision nitrogen management strategies in corn. Agric. Syst. 89:272-298.

- Timsina, J. 1997. Modeling and simulation of rice, wheat and maize crop for selected sites and the potential effects of climate change on their productivity. Unpublished Report, CSIRO Land and Water, Australia.
- Timsina, J. and E. Humphreys. 2006. Performance of CERES-Rice and CERES-Wheat models in rice wheat systems: a review, Agricultural system.
- Timsina, J., L.A. Hunt and K.J. Boote. 2006. Guidelines for evaluating datasets prior to model application (in preparation).
- Toit A.S. and D.L. Toit.2003. Short description of the model statistical packages and weather analogue program. Unpublished report, University of Florida, Gainesville, USA.
- Tollenaar, M. and A. Aguilera. 1992. Radiation use efficiency of an old and a new maize hybrid. Agronomy Journal. 84:536-541.
- Traore, S.B., R.E. Carlson, C.D. Pilcher and M.E. Rice. 2000. Bt and Non-Bt maize growth and development as affected by temperature and drought stress. Agron. J. 92:1027-1035.
- Tsuji, G.Y., G. Uehara and S. Balas. 1994. Decision Support System for Agrotechnology Transfer (DSSAT) Version 3. University of Hawaii, Honolulu, Hawaii.
- Vafa, P., M. Barari and H. Darkhal. 2013. Interaction of grain hybrids in various planting date. International Journal of Agronomy and plant production 4(8): 2018-2023.
- Walker, J.M. 1969. One degree increments in soil temperatures affect maize seedling behaviour. Proc. Soc. Soil Sci. Am. 33: 729-736.
- Walkley, A.J. and L.A. Black. 1934. An estimation of Degrareff method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Sci. 37: 29-38.

- Wani, S.P., P. Pathak, L.S. Jangawad, H. Eswaran and P. Singh. 2003. "Improved Management of Vertisols in the Semiarid Tropics for Increased Productivity and Soil Carbon Sequestration." Soil Use and Management 19 (3): 217–22
- Watanable, F.S. and S.R. Olsen.1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO₃ extracts from the soil. Soil Sci. Soc. Amer. Proc. 29: 677-678.
- Watt, W.R. 1972. Leaf extension in Zea mays. J. Exp. Bot. 23: 713-721.
- Weaich, K., K. L. Bristow and A. Cass. 1996. Modelling pre-emergent maize shoot growth II. High temperature stress conditions. Agron. J. 88: 398-403.
- Weaich, K., K.L. Bristow and A. Cass. 1996. Simulating maize emergence using soil and climate data. Agron. J. 88: 667-674.
- Welcker. C., B. Boussuge, C. Bencivenni, J.M. Ribaut and F. Tardieu. 2007. Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit.Journal of Experimental Botany 58: 339-349.
- Westgate, M.E. 1997. Physiology of flowering in maize: identifying avenues to improve kernel set during drought. In: Edmeades, G.O., M. Banziger. H.R. Mickelson, and C. B. Pena-Valdivia, (ed.). Developing drought and low-N tolerant maize. CIMMYT, EI Batan, Mexico. pp. 136-141.
- Willmott, C.J. 1982. Some comments on the evaluation of model performance. Bull. Am. Meteorol.Soc. 63:1309-1313.
- Wilson, D.R., R.C. Muchow and C.J. Murgatroyd. 1995. Model analysis of temperature and solar radiation limitations to maize potential productivity in a cool climate Field Crops Research 43: 1-18.

- Wolf, J. 2002. Comparison of two soyabean simulation models under climate change. I. Model calibration and sensitivity analysis.Clim. Res. 20: 55-70.
- Wolf, J. and C.A. van Dipen. 1995. Effects of climate change on grain maize yield potential in the European Community. Clim. Change 29: 299-331.
- Wright, C.H. 1939. Soil analysis. A handbook of physical and chemical methods. Thomas-Murty and Co.London.
- Yang, J., R.G. Sears, B.S. Gill and G. M. Paulsen. 2000. Genotypic differences in utilization of assimilate sources during maturation of wheat under chronic heat and heat shock stresses. Euphytica. 125: 179-188.

APPENDICES

Appendix 1. Means for leaf area indices (LAI) and leaf area duration (LAD) at different growth stages as affected by three sowing dates and four different cultivars in maize during spring, 2013 at Shivamandir-2, Nawalparasi

Treatments	30 DAS	45 DAS	60 DAS	75 DAS	LAD(days)
Local					
7 th April	0.389	2.377	2.396	2.368	120.819
22 nd April	0.690	2.085	2.359	1.869	102.699
7 th May	0.660	1.743	2.189	0.995	71.389
Poshilo makai-1					
7 th April	0.263	2.959	3.629	3.157	192.065
22 nd April	0.890	2.591	3.482	2.928	160.443
7 th May	0.795	2.055	2.83	2.098	113.978
RML-4/17					
7 th April	0.240	3.265	4.131	3.774	228.475
22 nd April	1.116	3.124	3.805	2.967	185.917
7 th May	1.104	2.305	3.516	2.389	136.856
Arun-2					
7 th April	0.385	2.399	2.995	2.730	138.915
22 nd April	0.744	2.133	2.798	2.427	119.254
7 th May	0.733	1.911	2.545	1.607	84.397
SEm+	0.093	0.121	0.147	0.205	6.780
LSD (0.05%)	0.273	NS	NS	NS	NS
CV%	24.04%	8.71%	8.34%	14.52%	8.51%

Appendix 2. Means above ground dry matter production at different growth stages as affected by three sowing dates and four different cultivars in maize during spring, 2013 at Shivamandir-2, Nawalparasi

Treatments	30 DAS	45 DAS	60 DAS	75 DAS	90 DAS
Local					
7 th April	0.282	2.271	4.885	7.794	8.946
22 nd April	0.29	2.110	4.53	7.19	8.305
7 th May	0.446	2.044	4.416	5.831	6.795
Poshilo makai-1					
7 th April	0.149	2.145	5.568	8.15	9.219
22 nd April	0.238	2.166	5.232	7.409	8.943
7 th May	0.508	2.426	5.066	6.63	8.172
RML-4/17					
7 th April	0.18	2.835	7.321	10.59	13.49
22 nd April	0.266	2.635	6.051	8.71	11.28
7 th May	0.346	2.511	5.519	7.569	10.04
Arun-2					
7 th April	0.217	1.839	5.276	7.597	8.809
22 nd April	0.362	1.913	4.444	6.665	7.782
7 th May	0.592	2.022	4.461	6.485	7.321
SEm <u>+</u>	0.055	0.2168	0.3199	0.2739	0.3737
LSD(0.05%)	NS	NS	NS	0.8032	NS
CV%	30.01%	16.72%	10.59%	6.29%	7.12%

NS=Non significant

Treatments	Knee height	Anthesis	Silking	Seed fill period
Local				
7 th April	28.67	49	53.33	46
22 nd April	28.33	48	52	45
7 th May	28	48	52	43
Poshilo makai-1				
7 th April	32.67	61	64.67	54
22 nd April	30.33	61	64.33	53
7 th May	30	59	63	54
RML-4/17				
7 th April	34	56	60.67	61
22 nd April	26.33	53	56.67	61
7 th May	26.67	53	56	60
Arun-2				
7 th April	30.33	49	53.67	44
22 nd April	27.33	47.67	52	44.33
7 th May	27.33	48	52	42.67
SEm+	0.878	0.861	0.918	0.845
LSD(0.05%)	2.574	NS	NS	NS
CV%	5.21%	2.83%	2.80%	2.89%

Appendix 3. Means days at different phenological stages as affected by three sowing dates and four different cultivars in maize during spring, 2013 at Shivamandir-2, Nawalparasi

NS=Non significant

Appendix 4. Means growth degree days at different phenological stages as affected by three sowing dates and four different cultivars in maize during spring, 2013 at Shivamandir-2, Nawalparasi

Treatments	Knee height	Anthesis	Silking	Seed fill period
Local				
7 th April	492.6	885.4	968.4	891.5
22 nd April	519	902	986.9	873.5
7 th May	540.3	928.8	1006	847.5
Poshilo makai-1				
7 th April	569.3	1118	1192	1054
22 nd April	557.4	1151	1216	1042
7 th May	581.8	1145	1221	1067
RML-4/17				
7 th April	596.2	1016	1111	1196
22 nd April	481.4	1007	1075	1188
7 th May	513.1	1025	1057	1187
Arun-2				
7 th April	523.7	885.4	974.8	853.9
22 nd April	499.8	895.9	1005	860.7
7 th May	526	928.8	986.9	840.6
SEm <u>+</u>	17.35	17.18	16.45	16.8
LSD(0.05%)	50.9	NS	NS	NS
CV%	5.64%	3.00%	2.67%	2.93%

NS=Non significant

Treatments	Knee height	Anthesis	Silking	Seed fill period
Local				
7 th April	17.18	18.07	18.16	19.38
22 nd April	18.32	18.79	18.98	19.41
7 th May	19.29	19.35	19.35	19.71
Poshilo makai-1				
7 th April	17.42	18.33	18.44	19.52
22 nd April	18.37			
7 th May	19.39			
RML-4/17				
7 th April	17.53	18.14	18.32	19.6
22 nd April	18.28	19	18.98	19.47
7 th May	19.24	19.35	18.89	19.78
Arun-2				
7 th April	17.26	18.07	18.16	19.41
22 nd April	18.28	18.8	18.98	19.41
7 th May	19.25	19.35	19.34	19.7
SEm <u>+</u>	0.0447	0.02582	0.1329	0.01826
LSD(0.05%)	0.1312	0.07573	NS	0.05355
CV%	0.44%	0.23%	1.22%	0.16%

Appendix 5. Means phenothermal index at different phenological stages as affected by three sowing dates and four different cultivars in maize during spring, 2013 at Shivamandir-2, Nawalparasi

NS=Non significant

Appendix 6. Means for different yield attributes of maize as affected by three sowing dates and four different cultivars in maize during spring, 2013 at Shivamandir-2, Nawalparasi

Treatments	Ear no ha ⁻¹ ('000)	Kernel rows ear ⁻¹	Kernels row ⁻¹	1000 grain weight (g)
Local				
7 th April	60000	11.4	21.96	206.8
22 nd April	60000	11.27	21.92	206.4
7 th May	59260	11.27	19.42	200
Poshilo makai-1				
7 th April	54810	14.17	31.06	246.1
22 nd April	57040	13	24.65	241.9
7 th May	57780	12.33	22.68	235.8
RML-4/17				
7 th April	62220	14.03	35.78	245.6
22 nd April	56300	13.64	27.89	244.5
7 th May	56300	13.64	27.59	244.5
Arun-2				
7 th April	59260	11.97	23.08	229.5
22 nd April	57040	11.97	23.41	232.4
7 th May	59260	11.63	21.25	217
SEm+	1601	0.1494	0.6022	3.373
LSD(0.05%)	NS	0.4383	1.766	NS
CV%	4.76%	2.07%	4.16%	2.55%

NS=Non significant
Appendix 7. Means for grain yield (t ha⁻¹), stover yield (t ha⁻¹) and harvest index of maize as affected by three sowing dates and four different cultivars in maize during spring, 2013 at Shivamandir-2, Nawalparasi

Treatments	Grain yield (t ha ⁻¹)	Stover yield (t ha ⁻¹)	Harvest index
Local			
7 th April	3.121	10.54	0.2967
22 nd April	3.036	10.63	0.2917
7 th May	2.601	10.76	0.2453
Poshilo makai-1			
7 th April	5.933	15.61	0.38
22 nd April	4.418	15.27	0.291
7 th May	3.825	12.54	0.3063
RML-4/17			
7 th April	7.684	18.81	0.41
22 nd April	5.232	17.96	0.2913
7 th May	5.173	14.79	0.3507
Arun-2			
7 th April	3.765	12.44	0.303
22 nd April	3.73	13.16	0.2833
7 th May	3.168	12.24	0.259
SEm+	0.1549	0.5788	0.01826
LSD(0.05%)	0.4544	1.698	0.05355
CV%	6.23%	7.30%	9.15%
NS=Non significat	nt		

Appendix 8. Summary of probability values for DM from analysis of variation

Source of variation		DM accumulation									
Source of variation		ANOVA probability values									
	Df	30 DAS	45 DAS	60 DAS	75 DAS	90 DAS					
Rep	2	*	0.1873	*	*	**					
Sowing dates	2	**		**	**	**					
Varieties	3	0.0608	**	**	**	**					
S X V	6	0.3110		0.4231	*	0.0604					

Appendix 9.	Summary of	probability values	for LAI and LAD	from analysis of varian	ce
1 1	2	1 2		2	

Source of variation		LAI							
Source of variation	-	ANOVA probability values							
	df	30 DAS	45 DAS	60 DAS	75 DAS	LAD			
Rep	2	0.1453	*		0.3498	••••			
Sowing dates	2	**	**	**	**	**			
Varieties	3	*	**	**	**	**			
S X V	6	*	0.2448	•••••	•••••	0.0844			

Source of variation	df	EN	KRN	KN	TW	GY	SY	HI
ANOVA probability	valu	ies						
Rep	2	0.2202	*				0.1715	0.1502
Sowing dates	2		**	**	**	**	**	**
Varieties	3	0.1370	**	**	**	**	**	**
S X V	6	0.1505	**	**	0.4094	**	*	*

Appendix 10. Summary of probability values for yield and yield attributing character from

analysis of variance

Appendix 11. Summary of probability values for days to phonological stage from analysis of variance

Source of variation		Days to phenology							
Source of variation	-	ANOVA probability values							
	df	Knee height stage	Anthesis	Silking	Seed fill period				
Rep	2			•••••					
Sowing dates	2	**	*	**	0.0966				
Varieties	3	**	**	**	**				
S X V	6	**	•••••	0.4266					

Appendix 12. Summary of probability values for growth degree days to phenological stages from analysis of variance

Source of variation	_	Growth degree days								
Source of variation		ANOVA probability values								
	df	Knee height stage	Anthesis	Silking	Seed fill period					
Rep	2			•••••						
Sowing dates	2	*	0.0597	•••••						
Varieties	3	**	**	**	**					
S X V	6	*		0.1413	•••••					

Appendix 13. Summary of probability values for phenothermal index at different phenological stages from analysis of variance

Source of variation		Phenothermal index							
Source of variation	_	ANOVA probability values							
	df	Knee height stage	Anthesis	Silking	Seed fill period				
Rep	2			0.3838	0.3596				
Sowing dates	2	**	**	**	**				
Varieties	3	**	**	•••••	**				
S X V	6	**	**	0.1765	**				

		Atthis	bigha														
95	SITE			COUNTR	Y	LAT	``LC	NG	SCS	FAMILY							
0	Shiva-	mandir-	-2	Nepa	.1	27.60	5574	84.130	9								
g	SCOM	SALB	SLU1	SLDR	SLRO	SLNF	SLPF	SMHB	SMPX	SMKE							
	Y	0.09	6.0	0.25	81.0	1.00	1.00	IB001	IB001	IB001							
g	SLB	SLMH	SLLL	SDUL	SSAT	SRGF	SSKS	SBDM	SLOC	SLCL	SLSI	SLCF	SLNI	SLHW	SLHB	SCEC	SADC
	20	-99	0.183	0.338	0.433	1.000	0.68	0.98	3.1	6.1	4.9	-99	3.500	6.2	-99	-99	-99
	40	-99	0.178	0.336	0.432	0.559	0.65	1.17	1.4	5.7	5.7	-99	3.000	6.3	-99	-99	-99
	60	-99	0.164	0.306	0.417	0.368	0.64	1.14	1.5	5.1	5.1	-99	2.700	6.6	-99	-99	-99
	80	-99	0.153	0.287	0.370	0.247	0.60	1.25	.4	5	5	-99	7.400	8.4	-99	-99	-99
G	SLB	SLPX	SLPT	SLPO	CACO3	SLAL	SLFE	SLMN	SLBS	SLPA	SLPB	SLKE	SLMG	SLNA	SLSU	SLEC	SLCA
	20	96.0	210.0	187.0	0.27	2.30	2.30	-99	-99	-99	-99	0.08	0.13	0.00	13.30	-99	0.27
	40	56.0	183.0	155.0	0.12	2.01	2.30	-99	-99	-99	-99	0.03	0.05	0.00	15.30	-99	0.12
	60	40.0	150.3	100.0	0.11	1.25	2.30	-99	-99	-99	-99	0.03	0.04	0.00	14.10	-99	0.11
	80	32.1	134.2	96.1	0.09	1.09	2.09	-99	-99	-99	-99	0.09	0.09	0.00	12.10	-99	0.09

Appendix 14. 'Soil file' used in spring maize experiment for running 01NP1301.MZX experiment file

@TRNO	PDAT	EDAT	ADAP	MDAP	HWUM	HWAM SDA	AT H#AM	-99	
1	13097	13102	49	94	0.206	3121 1309	97 1501	-99	
2	13097	13101	61	114	0.246	5933 1309	97 2411	-99	
3	13097	13102	56	116	0.245	7684 1309	97 3123	-99	
4	13097	13101	49	92	0.229	3765 1309	97 1635	-99	
5	13112	13117	48	92	0.205	3037 1311	.2 1499	-99	
6	13112	13117	61	113	0.244	4418 1311	.2 1898	-99	
7	13112	13117	53	113	0.246	5233 1311	.2 2339	-99	
8	13112	13116	47.67	91	0.232	3730 1311	.2 1597	-99	
9	13127	13132	48	90	0.202	2601 1312	27 1279	-99	
10	13127	13132	59	112	0.242	3825 1312	27 1567	-99	
11	13127	13132	53	112	0.245	5174 1312	27 2146	-99	
12	13127	13131	48	90	0.225	3168 1312	27 1483	-99	

Appendix 15. 'A file' used in spring maize experiment for running 01NP1301.MZX experiment file

4 1'	1 /		C*1 1	1	•	•	•	•	C	•	011101001	3 4/737
Annondiv	16		tila'	licod	111	coring	m0170	ovnorimont	tor	running		$\Lambda/\Gamma Z X$
ADDEHUIA	TO.	1		useu	111	SDTILLS			ю	TUITITIE	\mathbf{U}	
						~r0				0		

@TRNO	DATE	LLAID	CGRD	
1	13126	0.389	0.157	
1	13141	3.377	2.207	
1	13156	2.396	2.900	
1	13171	2.368	3.236	
1	13186	0.648	1.283	
2	13126	0.263	0.091	
2	13141	2.959	2.418	
2	13156	3.630	4.167	
2	13171	3.157	3.144	
2	13186	2.508	1.883	
3	13126	0.240	0.097	
3	13141	3.265	2.844	
3	13156	4.131	4.807	
3	13171	3.774	3.5	
3	13186	3.451	3.111	
4	13126	0.385	0.122	
4	13141	2.399	1.823	
4	13156	2.995	3.867	
4	13171	2.730	2.616	
4	13186	0.568	1.360	
5	13141	0.696	0.161	
5	13156	2.085	2.022	
5	13171	2.359	2.689	
5	13186	1.869	2.956	
5	13201	0.375	1.239	
6	13141	0.890	0.139	
6	13156	2.591	2.278	
6	13171	3.482	3.567	
6	13186	2.928	2.567	
6	13201	1.083	1.8	
7	13141	1.116	0.156	
7	13156	3.124	2.8	
7	13171	3.805	4.056	
7	13186	2.967	3.133	
7	13201	1.739	3.028	

experiment file

@TRNO	DATE	LLAID	CGRD	
8	13141	0.744	0.211	
8	13156	2.133	1.811	
8	13171	2.799	2.967	
8	13186	2.427	2.6	
8	13201	0	1.3	
9	13156	0.660	0.256	
9	13171	1.743	1.767	
9	13186	2.189	2.694	
9	13201	0.995	1.594	
9	13216	0	1.089	
10	13156	0.795	1.066	
10	13171	2.056	2 228	
10	13186	2.83	2.645	
10	13201	2 098	2 296	
10	13216	0 433	1 751	
11	13156	1 104	0 206	
11	13171	2 304	2 555	
11	13186	3 516	2.555	
11	13201	2.360	2.001	
11	13216	2.309	2.42/	
12	12156	0.723	0.226	
12	12171	1 012	1 604	
12	12100	1.912	1.394	
12	13186	2.545	2.756	
12	13201	1.608	2.272	
	13216	U	0.94/	
		OLIDD		
TRNO	DATE	CWPD		
TRNO	DATE 13126	CWPD 4.720		
	DATE 13126 13141	CWPD 4.720 37.83		
TRNO 1 1 1 1	DATE 13126 13141 13156	CWPD 4.720 37.83 81.33		
TRNO 1 1 1 1 1 1 1 1 1	DATE 13126 13141 13156 13171	CWPD 4.720 37.83 81.33 129.8		
TRNO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DATE 13126 13141 13156 13171 13186	CWPD 4.720 37.83 81.33 129.8 148.9		
TRNO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DATE 13126 13141 13156 13171 13186 13190	CWPD 4.720 37.83 81.33 129.8 148.9 152		
TRNO 1 1 1 1 1 1 1 1 1 2	DATE 13126 13141 13156 13171 13186 13190 13126	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730		
TRNO 1 1 1 1 1 1 1 1 1 2 2 2	DATE 13126 13141 13156 13171 13186 13190 13126 13141	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00		
TRNO 1 1 1 1 1 1 1 1 2 2 2 2 2	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5		
TRNO 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13171	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6		
TRNO	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13171 13186	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9		
TRNO	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13171 13186 13201	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9 199.6		
TRNO	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13171 13186 13201 13210	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9 199.6 208.6		
TRNO 1 1 1 1 1 1 2 2 2 2 2 2 2	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13171 13186 13201 13210 13126	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9 199.6 208.6 2.898		
TRNO 1 1 1 1 1 1 2 2 2 2 2 2 2	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13171 13186 13201 13210 13126 13141	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9 199.6 208.6 2.898 45.56		
TRNO	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13171 13186 13201 13210 13126 13141 13156	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9 199.6 208.6 2.898 45.56 117.6		
TRNO 1 1 1 1 1 1 2 2 2 2 2 2 2	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13201 13210 13210 13126 13141 13156 13141 13156 13171	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9 199.6 208.6 2.898 45.56 117.6 170.1		
TRNO 1 1 1 1 1 1 2 2 2 2 2 2 2	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13171 13186 13201 13210 13210 13126 13141 13156 13171 13186	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9 199.6 208.6 2.898 45.56 117.6 170.1 216.8		
TRNO 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13201 13210 13210 13210 13126 13141 13156 13171 13186 13171 13186 13201	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9 199.6 208.6 2.898 45.56 117.6 170.1 216.8 247.3		
TRNO 1 1 1 1 1 1 2 2 2 2 2 2 2	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13171 13186 13201 13210 13126 13141 13156 13171 13186 13171 13186 13201 13212	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9 199.6 208.6 2.898 45.56 117.6 170.1 216.8 247.3 273.6		
TRNO 1 1 1 1 1 1 2 2 2 2 2 2 2	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13171 13186 13201 13210 13126 13141 13156 13171 13186 13171 13186 13201 13212 13126	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9 199.6 208.6 2.898 45.56 117.6 170.1 216.8 247.3 273.6 3.653		
TRNO 1 1 1 1 1 1 2 2 2 2 2 2 2	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13171 13186 13201 13210 13126 13141 13156 13171 13186 13171 13186 13201 13212 13126 13141	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9 199.6 208.6 2.898 45.56 117.6 170.1 216.8 247.3 273.6 3.653 31.00		
TRNO 1 1 1 1 1 1 2 2 2 2 2 2 2	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13171 13186 13201 13210 13126 13141 13156 13171 13186 13201 13212 13126 13141 13126 13141 13156	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9 199.6 208.6 2.898 45.56 117.6 170.1 216.8 247.3 273.6 3.653 31.00 89.00		
TRNO 1 1 1 1 1 1 2 2 2 2 2 2 2	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13171 13186 13201 13210 13126 13141 13156 13171 13186 13201 13212 13126 13141 13156 13141 13156 13171	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9 199.6 208.6 2.898 45.56 117.6 170.1 216.8 247.3 273.6 3.653 31.00 89.00 128.2		
TRNO 1 1 1 1 1 1 2 2 2 2 2 2 2	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13171 13186 13201 13210 13126 13141 13156 13171 13186 13201 13212 13126 13141 13156 13171 13186	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9 199.6 208.6 2.898 45.56 117.6 170.1 216.8 247.3 273.6 3.653 31.00 89.00 128.2 148.6		
TRNO 1 1 1 1 1 1 2 2 2 2 2 2 2	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13171 13186 13201 13210 13210 13210 13126 13141 13156 13171 13186 13201 13212 13121 13126 13141 13156 13171 13186 13171 13186 13171 13186 13171	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9 199.6 208.6 2.898 45.56 117.6 170.1 216.8 247.3 273.6 3.653 31.00 89.00 128.2 148.6 150.3		
TRNO 1 1 1 1 1 1 2 2 2 2 2 2 2	DATE 13126 13141 13156 13171 13186 13190 13126 13141 13156 13171 13186 13201 13210 13210 13126 13141 13156 13171 13186 13201 13212 13121 13126 13141 13156 13171 13186 13171 13186 13171	CWPD 4.720 37.83 81.33 129.8 148.9 152 2.730 39.00 101.5 148.6 167.9 199.6 208.6 2.898 45.56 117.6 170.1 216.8 247.3 273.6 3.653 31.00 89.00 128.2 148.6 150.3 4.833		

TRNO	DATE	CWPD	
5	13171	75.5	
5	13186	119.8	
5	13201	138.4	
5	13203	139.9	
6	13141	4.167	
6	13156	38.33	
6	13171	91.83	
6	13186	130 3	
6	13201	157 3	
6	13216	180 3	
6	132210	180.3	
0	131/1	1 667	
7	13141	4.007	
7	12171	107 5	
7	13171	107.5	
1	13186	154.5	
/	13201	199.9	
/	13216	233.6	
/	13224	247.3	
8	13141	6.333	
8	13156	33.50	
8	13171	78.00	
8	13186	117.0	
8	13201	136.5	
9	13156	7.667	
9	13171	34.16	
9	13186	74.58	
9	13201	98.50	
9	13216	114.8	
10	13156	8.750	
10	13171	42.16	
10	13186	87.66	
10	13201	115.3	
10	13216	141.5	
10	13231	162	
10	13238	168.6	
11	13156	6.167	
11	13171	44.50	
11	13186	97.76	
11	13201	134.2	
11	13216	178.1	
11	13231	218 7	
11	13238	227 7	
12	13156	10.08	
12	13171	34 00	
12	13186	75 33	
12	13201	109 /	
12	13216	103 6	
	TOCIO	120.0	

Appendix 17. 'X file' used in spring maize experiment for running 01NP1301.MZX experiment file

*EXP.DETAILS: 01NP1301MZ SIMULATION OF EFFECT OF CLIMATE CHANGE IN MAIZE *GENERAL @PEOPLE Nepalese **@ADDRESS** Nawalparasi **ØSITE** Shivamandir-2 @ PAREA PRNO PLEN PLDR PLSP PLAY HAREA HRNO HLEN HARM..... -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 *TREATMENTS -----FACTOR LEVELS-----@N R O C TNAME..... CU FL SA IC MP MI MF MR MC MT ME MH SM 1 1 1 0 LOCAL + APRIL 7 1 1 0 0 1 0 0 0 0 0 0 0 1 2 2 2 1 1 0 QPM + APRIL 7 2 1 0 0 0 0 0 0 0 0 0 3 3 1 1 0 HYBRID-417 + APRIL 7 1 0 0 3 0 0 0 0 0 0 0 3 0 4 1 1 0 ARUN-2 + APRIL 7 4 1 0 0 4 0 0 0 0 0 0 4 1 0 5 1 1 0 LOCAL + APRIL 22 2 0 05 0 0 0 0 0 0 5 0 0 6 1 1 0 QPM + APRIL 22 2 2 0 0 6 0 0 0 0 0 6 2 1 1 0 HYBRID-417+ APRIL 22 1 1 0 ARUN-2+ APRIL 22 1 1 0 LOCAL + MAY 7 0 0 0 7 7 2 0 0 0 0 0 0 7 0 8 1 1 0 ARUN-2+ APRIL 22 2 0 0 8 0 0 0 0 0 0 8 09 9 1 1 0 LOCAL + MAY 7 1 3 0 09 0 0 0 0 0 0

 1
 1
 0
 QFM + MAY 7
 2
 3

 11
 1
 0
 HYBRID-417 + MAY 7
 3
 3

 12
 1
 0
 ARUN-2 + MAY 7
 4
 3

 0 10 0 0 10 0 0 0 0 0 0 0 0 10 0 11 0 0 11 0 0 0 0 0 4 3 0 0 12 0 0 0 0 0 0 0 12 *CULTIVARS @C CR INGENO CNAME 1 MZ IB0060 LOCAL 2 MZ IB0064 QPM 3 MZ IB0055 HYBRID-417 4 MZ IB0061 ARUN-2 *FIELDS @L ID FIELD WSTA.... FLSA FLOB FLDT FLDD FLDS FLST SLTX SLDP ID SOIL FUNAME -99 -99 -99 UFBG760002 4/7/2013 1 IAAS0001 MUNA1301 -99 -99 -99 -99 -99 -99 UFBG760002 4/22/2013 -99 UFBG760002 5/7/2013 -99 -99 -99 -99 -99 -99 -99 2 IAAS0002 MUNA1301 -99 -99 -99 -99 -99 3 IAAS0003 MUNA1301 -99 -99 @L ..XCRD ..YCRD ELEV .AREA .SLEN FLWR .SLAS FLHST FHDUR -99 -99 -99 1 -99 -99 2 3 -99 -99 -99 -99 -99 -99 -99 -99 -99 *INITIAL CONDITIONS @C PCR ICDAT ICRT ICND ICRN ICRE ICWD ICRES ICREN ICREP ICRIP ICRID ICNAME MZ 13097 -99 -99 1 1 -99 -99 -99 -99 -99 -99 LOCAL + APRIL 7 1 ICBL SH20 SNH4 SNO3 ØС 20 -99 8 15 1 1 40 -99 6 18 -99 1 60 5.7 19.5 1 80 -99 5 21 -99 1 100 4.7 25

@C 2 @C 3 @C 4 @C 5 @C 6 @C 7 @C 8 @C 9 @C 10 @C 11 @C 12	PCR ICD MZ 130 PCR ICD MZ 130	AT ICRT 97 -99 AT ICRT 97 -99 <th>ICND I -99 ICND I -99</th> <th>CCRN IC 1 CCRN IC</th> <th>RE ICWD 1 -99 RE ICWD 1 -99</th> <th>ICRES IC -99 ICRES IC</th> <th>REN ICREP -99 -99 REN ICREP -99 -99 -99 -99 REN ICREP -99 -99</th> <th>ICRIP ICRID -99 -99 ICRIP ICRID -99 -99 -99<th>ICNAME QPM + APRIL 7 ICNAME HYBRID-417 + APRIL 7 ICNAME ARUN-2 + APRIL 7 ICNAME LOCAL + APRIL 22 ICNAME QPM + APRIL 22 ICNAME HYBRID-417 + APRIL 22 ICNAME LOCAL + MAY 7 ICNAME QPM + MAY 7 ICNAME HYBRID-417 +MAY 7 ICNAME ARUN-2 + MAY 7</th></th>	ICND I -99 ICND I -99	CCRN IC 1 CCRN IC	RE ICWD 1 -99 RE ICWD 1 -99	ICRES IC -99 ICRES IC	REN ICREP -99 -99 -99 -99 REN ICREP -99 -99	ICRIP ICRID -99 -99 -99 <th>ICNAME QPM + APRIL 7 ICNAME HYBRID-417 + APRIL 7 ICNAME ARUN-2 + APRIL 7 ICNAME LOCAL + APRIL 22 ICNAME QPM + APRIL 22 ICNAME HYBRID-417 + APRIL 22 ICNAME LOCAL + MAY 7 ICNAME QPM + MAY 7 ICNAME HYBRID-417 +MAY 7 ICNAME ARUN-2 + MAY 7</th>	ICNAME QPM + APRIL 7 ICNAME HYBRID-417 + APRIL 7 ICNAME ARUN-2 + APRIL 7 ICNAME LOCAL + APRIL 22 ICNAME QPM + APRIL 22 ICNAME HYBRID-417 + APRIL 22 ICNAME LOCAL + MAY 7 ICNAME QPM + MAY 7 ICNAME HYBRID-417 +MAY 7 ICNAME ARUN-2 + MAY 7
* P: @P F 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1	LANTING 2DATE EDATE 3097 -99 3097 -99 3097 -99 31097 -99 3112 -99 3112 -99 3112 -99 3112 -99 3127 -99 3127 -99 3127 -99	DETAII DETAII 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	LS POE PLME 6 S 181 S 222 S 225 S 6 S 703 S 529 S 707 S 529 S 707 S 529 S 707 S 529 S 707 S 529 S 707 S 529 S 707 S 708 S 709 S 709 S 709 S 709 S 700 S	PLDS PI R R R R R R R R R R R R R R	RS PLRD 60 -99	PLDP PLW 5 -9 5 -9 5 -9 5 -9 5 -9 5 -9 5 -9 5 -9	T PAGE PH 9 -99 - 9 -99 -	ENV PLPH SPRI -99 -99 -99 -99 -99 -99	PLNAME LOCAL + APRIL 7 QPM + APRIL 7 HYBRID-417 + APRIL 7 ARUN-2 + APRIL 7 LOCAL + APRIL 22 QPM + APRIL 22 HYBRID417+APRIL 22 ARUN-2+APRIL22 LOCAL + MAY 7 HYBRID-417 + MAY 7 ARUN-2 + MAY 7
*I: @I	RRIGATI EFIR	ION ANI) WATER ITHR	R MANA IEPI	.GEMENI ' IOFF	' IAME	L IAMT	IRNAME	
1	1	30	50	100	GS000	IR001	. 10	LOCAL +	APRIL 7
П	TDATE	TROP	TRVAL						
1	13007	TD001	150						
1	12000		150						
T	T3033	IRUUI	150						
1	13101	IR001	150						
1	13105	IR001	150						
1	13108	TR001	150						
1	13117	TR001	150						
1	13100		150						
1	10122		150						
1	13132	IRUUI	150						
GΤ	EFIR	IDEP	TTHR	IEPI 100	TOFF	I AME	I AMT	IRNAME	7
2		30	50	TOO	GSUUU	1K001	. 10	QPM + AP	KIL /
ΘI	IDATE	IROP	IRVAL						
2	13097	IR001	150						
2	13099	IR001	150						
2	13099	IR001	150						
2	13099	IR001	150						
2	13101	IR001	150						
2	13101	TR001	150						
2	13101	TR001	150						
ے ج	TOTOT	TIVOOT	JULT TUTT			י דאאאד	י דא <i>ו</i> אוחי		
ЧТ С	GLIK 1	ТПЕБ	TIHK	TELI	TOFF		I AMT	TKNAMP	17 , 35577 7
3		30	50	T00	GSUUU	1K001	. 10	HYBRID-4	I/ + APKIL /
βĪ	IDATE	IROP	ſRVAL						
3									
	13097	IR001	150						
3	13097 13097	IR001 IR001	150 150						
3 3	13097 13097 13097	IR001 IR001 IR001	150 150 150						
3 3 3	13097 13097 13097 13099	IR001 IR001 IR001 IR001	150 150 150 150						

3	13099	IROC)1	150									
3	13099	IROC)1	150									
3	13101	IROC)1	150									
3	13101	IROC)1	150									
3	13101	IROC)1	150									
3	13101	IROC)1	150									
ΘI	EFIR	IDE	EP I	THR	IEPT	IOFF	IAN	1E I.	AMT	IRNAME	1		
4	1	Э	30	50	100	GS000	IROO)1	10 2	ARUN-2	2 + APR	IL 7	
θI	IDATE	IRC)P IR	VAL									
4	13097	TROC)1	150									
4	13099	IROC)1	150									
4	13101	IROC)1	150									
* _F	FRTT.T	ZERS	(TNOF	CANT	1								
T AF	FDATE	FMCD	FACD	FDEP	FAMN	FAMP	FAMK	FAMC	FAMO	FOCD	FERNAME		
1	13097	-99	-99	1	5	6	4	-99	-99	-99	LOCAL +	APRIL 7	
2	13097	-99	-99	1	5	6	4	-99	-99	-99	QPM + AN	PRIL 7	
3	13097	-99	-99	1	5	6	4	-99	-99	-99	HYBRID-4	417 + APRIL _	7
4	13097	FE00 FE01	-99	1	5	6	4	-99	-99	-99	ARUN-2 -	+ APRIL 7	
5	13097	FEOI	-99 -99	1	5	6	4	-99 -99	-99	-99	OPM + AI	PRIL 22	
7	13097	FEOO	-99	1	5	6	4	-99	-99	-99	HYBRID-4	417 + APRIL	22
8	13097	FE01	-99	1	5	6	4	-99	-99	-99	ARUN-2 -	+ APRIL 22	
9	13097	FEOO	-99	1	5	6	4	-99	-99	-99	LOCAL +	MAY 7	
10	13097	FE00	-99	1	5	6	4	-99	-99	-99	QPM + MA	AY 7	
12^{11}	13097	FEOI	-99 -99	1	5	6	4	-99 -99	-99	-99	ARUN-2 -	+ MAY 7	
1	13013	FE01	-99	-99	5	-99	-99	-99	-99	-99	LOCAL +	APRIL 7	
2	13013	FEOO	-99	-99	5	-99	-99	-99	-99	-99	QPM + AN	PRIL 7	
3	13013	FEOO	-99	-99	5	-99	-99	-99	-99	-99	HYBRID-4	417 + APRIL	7
4	13013	FEOO	-99	-99	5	-99	-99	-99	-99	-99	ARUN-2 -	+ APRIL 7	
5	13015	FE00 FE01	-99	-99 -99	5	-99	-99 -99	-99 -99	-99	-99	OPM + AI	APRIL 22 Prti. 22	
7	13015	FEOO	-99	-99	5	-99	-99	-99	-99	-99	HYBRID-4	417 + APRIL	22
8	13015	FE01	-99	-99	5	-99	-99	-99	-99	-99	ARUN-2 -	+ APRIL 22	
9	13016	FEOO	-99	-99	5	-99	-99	-99	-99	-99	LOCAL +	MAY 7	
10	13016	FE00	-99	-99	5	-99	-99	-99	-99	-99	QPM + MA	AY 7	
11 12	13016	FEOI	-99 -99	-99 -99	5	-99 -99	-99 -99	-99 -99	-99	-99	ARUN-2 -	+17 + MA1 / + MAY 7	
	10010	1200	55	55	0	55	55	55	55	55		, , , ,	
*H	ARVEST	DETA	AILS										
QН	HDATE	HSI	IG H	COM H	ISIZE	HPC	HBE	PC HN	AME				
1	13097	GSOC	0	-99	-99	-99	- 9	99 Ma	ize				
							-		-				
*SI	MULATION	CONTRO	LS NDE			e DOEED	CNAME				CMODET		
еN 1	general Ge	NIE	I 1	1 1	S 1309	7 2150	LOCAL ·	+ APRII			MZCER		
QΝ	OPTIONS	WAI	CER NIT	RO SYMI	BI PHOS	P POTAS	DISES	CHEM	TILL	CO2			
1 0N	OP	አለጥር	Y IFR INC	Y ON ITC	Y I IT EVAD	N N	N PHOTO I	N N	Y NGWITT N	M MEGOM ME	GEV MEGOT		
1	METHODS ME	VV 1 1.	M M	M	E 1	R S	L L	R R	1 1	G G	S 2		
QN 1	MANAGEMEI	NT PLA	NT IRR	IG FER	FI RESI	D HARVS							
1 I AN	MA Outputs	FNA	R ME OVV	R TEW SIIMI	R I Ry Frop	R M T GROUT	CAOUT	WAOUT N	ITOIT N	ידם יינוסדא	OUT VBOSE	CHOUT OPOUT	
1	OU	1 142	N	Y	Y	1 Y	Y	Y	Y	Y	N Y	N Y	
g	AUTOM	ATIC	MANA	GEMEN	IΤ								
θN	PLANT	ING	PF	RST E	LAST	PH2OL	PH2C	DU PH	20D 3	PSTMX	PSTMN		
1	PL		13	001 1	3001	40	10	0	30	40	10		
θN	IRRIG	ATION	J IM	DEP I	THRL	ITHRU	IROB	F IM	ETH	IRAMT	IREFF		
1	IR			30	50	100	GS00)0 IR	001	10	1		
θN	NITRO	GEN	NM	DEP N	IMTHR	NAMNT	NCOI	DE NA	OFF				
1	NI			30	50	25	FE00)1 GS	000				
ΘN	RESID	UES	RI	PCN F	TIME	RIDEP	-	-					
1	RE			100	1	20							

@N HARVEST HFRST HLAST HPCNP HPCNR 0 01001 100 0 1 HA NYERS NREPS START SDATE RSEED SNAME...... SMODEL QN GENERAL 1 1 S 13097 2150 QPM + APRIL 7 2 GE MZCER WATER NITRO SYMBI PHOSP POTAS DISES CHEM TILL AN OPTIONS CO2 М 2 OP Y Y Y N N N Y WTHER INCON LIGHT EVAPO INFIL PHOTO HYDRO NSWIT MESOM MESEV MESOL ON METHODS 2 ME M M E R S L R 1 G S 2 PLANT IRRIG FERTI RESID HARVS QN MANAGEMENT 2 MA R R R M FNAME OVVEW SUMRY FROPT GROUT CAOUT WAOUT NIOUT MIOUT DIOUT VBOSE CHOUT OPOUT @N OUTPUTS 2 OU N Y Y 1 Y Y Y Y Y N Y N @ AUTOMATIC MANAGEMENT @N PLANTING PFRST PLAST PH2OL PH2OU PH2OD PSTMX PSTMN 2 PL 13001 13001 40 100 30 40 10 @N IRRIGATION IMDEP ITHRL ITHRU IROFF IMETH IRAMT IREFF 30 50 100 GS000 IR001 10 1 2 IR NMDEP NMTHR NAMNT NCODE NAOFF QN NITROGEN 30 50 25 FE001 GS000 2 NI QN RESIDUES RIPCN RTIME RIDEP 2 RE 100 1 20 HFRST HLAST HPCNP HPCNR QN HARVEST 2 HA 0 01001 100 0 QN GENERAL NYERS NREPS START SDATE RSEED SNAME...... SMODEL 1 S 13097 2150 HYBRID-417 + APRIL 7 3 GE WATER NITRO SYMBI PHOSP POTAS DISES CHEM TILL CO2 Y Y Y N N N N Y M ON OPTIONS 3 OP WTHER INCON LIGHT EVAPO INFIL PHOTO HYDRO NSWIT MESOM MESEV MESOL QN METHODS 3 ME М M E R S L R 1 G S @N MANAGEMENT PLANT IRRIG FERTI RESID HARVS 3 MA r r r r М FNAME OVVEW SUMRY FROPT GROUT CAOUT WAOUT NIOUT MIOUT DIOUT VBOSE CHOUT OPOUT @N OUTPUTS Y Y Y Y N Y 3 OU N Y Y 1 Y @ AUTOMATIC MANAGEMENT @N PLANTING PFRST PLAST PH2OL PH2OU PH2OD PSTMX PSTMN 3 PL 13001 13001 40 100 30 40 10 @N IRRIGATION IMDEP ITHRL ITHRU IROFF IMETH IRAMT IREFF 30 50 100 GS000 IR001 10 1 3 IR NMDEP NMTHR NAMNT NCODE NAOFF QN NITROGEN 3 NT 30 50 25 FE001 GS000 QN RESIDUES RIPCN RTIME RIDEP 3 RE 100 1 20 HFRST HLAST HPCNP HPCNR QN HARVEST 0 01001 100 0 3 HA @N GENERAL NYERS NREPS START SDATE RSEED SNAME..... SMODEL 1 1 S 13097 2150 ARUN-2 + APRIL 7 4 GE MZCER WATER NITRO SYMBI PHOSP POTAS DISES CHEM TILL @N OPTIONS CO2 Y Y Y N N N N Y M 4 OP WTHER INCON LIGHT EVAPO INFIL PHOTO HYDRO NSWIT MESOM MESEV MESOL QN METHODS SLR1GS2 4 ME М M E R @N MANAGEMENT PLANT IRRIG FERTI RESID HARVS R R R R 4 MA Μ @N OUTPUTS FNAME OVVEW SUMRY FROPT GROUT CAOUT WAOUT NIOUT MIOUT DIOUT VBOSE CHOUT OPOUT 4 OU NYY 1YYYY NYNY

@ AUTOMATIC MANAGEMENT PFRST PLAST PH2OL PH2OU PH2OD PSTMX PSTMN QN PLANTING 5 PL 13001 13001 40 100 30 40 10 **@N IRRIGATION** IMDEP ITHRL ITHRU IROFF IMETH IRAMT IREFF 5 IR 30 50 100 GS000 IR001 10 1 @N NITROGEN NMDEP NMTHR NAMNT NCODE NAOFF 30 50 25 FE001 GS000 5 NI RIPCN RTIME RIDEP **@N RESIDUES** 100 1 5 RE 20 QN HARVEST HFRST HLAST HPCNP HPCNR 0 01001 100 5 HA \cap NYERS NREPS START SDATE RSEED SNAME...... SMODEL 1 1 S 13112 2150 QPM + APRIL 22 MZCER @N GENERAL 6 GE WATER NITRO SYMBI PHOSP POTAS DISES CHEM TILL CO2 QN OPTIONS 6 OP Y Y Y N N N Ν Y М WTHER INCON LIGHT EVAPO INFIL PHOTO HYDRO NSWIT MESOM MESEV MESOL ON METHODS L R 1 G S M M E R S 6 ME @N MANAGEMENT PLANT IRRIG FERTI RESID HARVS 6 MA R r r r M QN OUTPUTS FNAME OVVEW SUMRY FROPT GROUT CAOUT WAOUT NIOUT MIOUT DIOUT VBOSE CHOUT OPOUT N Y 1 Y У У У Y N Y 6 OU Y N @ AUTOMATIC MANAGEMENT PFRST PLAST PH2OL PH2OU PH2OD PSTMX PSTMN QN PLANTING 6 PL 13001 13001 40 100 30 40 10 @N IRRIGATION IMDEP ITHRL ITHRU IROFF IMETH IRAMT IREFF 6 IR 30 50 100 GS000 IR001 10 1 @N NITROGEN NMDEP NMTHR NAMNT NCODE NAOFF 50 25 FE001 GS000 6 NI 30 RIPCN RTIME RIDEP @N RESIDUES 6 RE 100 1 20 QN HARVEST HFRST HLAST HPCNP HPCNR 6 HA 0 01001 100 Ω NYERS NREPS START SDATE RSEED SNAME...... SMODEL 1 1 S 13112 2150 HYBRID-417 + APRIL 22 MZCER @N GENERAL 7 GE @N OPTIONS WATER NITRO SYMBI PHOSP POTAS DISES CHEM TILL CO2 7 OP Y Y Y N N N N Y М ON METHODS WTHER INCON LIGHT EVAPO INFIL PHOTO HYDRO NSWIT MESOM MESEV MESOL L R 1 G S 7 ME M M E R S PLANT IRRIG FERTI RESID HARVS **@N MANAGEMENT** 7 MA R R R R Μ @N OUTPUTS FNAME OVVEW SUMRY FROPT GROUT CAOUT WAOUT NIOUT MIOUT DIOUT VBOSE CHOUT OPOUT 7 OU N Y Y 1 Y Y Y Y N Y N @ AUTOMATIC MANAGEMENT PFRST PLAST PH2OL PH2OU PH2OD PSTMX PSTMN @N PLANTING 13001 13001 40 100 30 40 10 7 PL IMDEP ITHRL ITHRU IROFF IMETH IRAMT IREFF @N IRRIGATION 10 50 100 GS000 IR001 30 7 TR 1 ON NITROGEN NMDEP NMTHR NAMNT NCODE NAOFF 7 NI 30 50 25 FE001 GS000 @N RESIDUES RIPCN RTIME RIDEP 7 RE 100 1 20 QN HARVEST HFRST HLAST HPCNP HPCNR 7 HA 0 01001 100 Ω @N GENERAL NYERS NREPS START SDATE RSEED SNAME..... SMODEL 8 GE 1 1 S 13112 2150 ARUN-2 + APRIL 22 MZCER @N OPTIONS WATER NITRO SYMBI PHOSP POTAS DISES CHEM TILL CO2 Y Y Y N N N Y 8 OP М @N METHODS WTHER INCON LIGHT EVAPO INFIL PHOTO HYDRO NSWIT MESOM MESEV MESOL M E R S 8 ME М SLR1G **@N MANAGEMENT** PLANT IRRIG FERTI RESID HARVS 8 MA R R R R М @N OUTPUTS FNAME OVVEW SUMRY FROPT GROUT CAOUT WAOUT NIOUT MIOUT DIOUT VBOSE CHOUT OPOUT 8 OU NYY 1YYYY NY NY

@ AUTOMATIC MANAGEMENT @N PLANTING PFRST PLAST PH2OL PH2OU PH2OD PSTMX PSTMN 8 PL 13001 13001 40 100 30 40 10 @N IRRIGATION IMDEP ITHRL ITHRU IROFF IMETH IRAMT IREFF 30 50 100 GS000 IR001 10 8 IR 1 @N NITROGEN NMDEP NMTHR NAMNT NCODE NAOFF 30 50 25 FE001 GS000 8 NI QN RESIDUES RIPCN RTIME RIDEP 8 RE 100 1 20 @N HARVEST HFRST HLAST HPCNP HPCNR 0 01001 100 8 HA \cap
 @N GENERAL
 NYERS NREPS START SDATE RSEED SNAME......
 SMODEL

 9 GE
 1
 1
 S 13127
 2150
 LOCAL + MAY 7
 MZCER
 @N OPTIONS WATER NITRO SYMBI PHOSP POTAS DISES CHEM TILL CO2 Ν 9 OP ү ү ү N N N Y M WTHER INCON LIGHT EVAPO INFIL PHOTO HYDRO NSWIT MESOM MESEV MESOL @N METHODS 9 ME М E R S L R 1 G М @N MANAGEMENT PLANT IRRIG FERTI RESID HARVS 9 MA R R R R М FNAME OVVEW SUMRY FROPT GROUT CAOUT WAOUT NIOUT MIOUT DIOUT VBOSE CHOUT OPOUT ON OUTPUTS 9 OU Y N Y Y 1 Y Y Y Y N Y N **@** AUTOMATIC MANAGEMENT @N PLANTING PFRST PLAST PH2OL PH2OU PH2OD PSTMX PSTMN 9 PL 13001 13001 40 100 30 40 10 @N IRRIGATION IMDEP ITHRL ITHRU IROFF IMETH IRAMT IREFF 30 50 100 GS000 IR001 10 1 9 IR QN NITROGEN NMDEP NMTHR NAMNT NCODE NAOFF 30 50 25 FE001 GS000 9 NI RIPCN RTIME RIDEP QN RESIDUES 9 RE 100 1 20 HFRST HLAST HPCNP HPCNR QN HARVEST 9 HA 0 01001 100 0 QN GENERAL NYERS NREPS START SDATE RSEED SNAME...... SMODEL 1 1 S 13127 2150 QPM + MAY 7 WATER NITRO SYMBI PHOSP POTAS DISES CHEM TILL CO2 10 GE MZCER AN OPTIONS 10 OP Y Y Y N N N N Y М WTHER INCON LIGHT EVAPO INFIL PHOTO HYDRO NSWIT MESOM MESEV MESOL ON METHODS 10 ME M M E R S L R 1 G S @N MANAGEMENT PLANT IRRIG FERTI RESID HARVS 10 MA R R R R M @N OUTPUTS FNAME OVVEW SUMRY FROPT GROUT CAOUT WAOUT NIOUT MIOUT DIOUT VBOSE CHOUT OPOUT 10 OU N Y Y 1 Y Y Y Y N Y N @ AUTOMATIC MANAGEMENT @N PLANTING PFRST PLAST PH2OL PH2OU PH2OD PSTMX PSTMN 10 PL 13001 13001 40 100 30 40 10 @N IRRIGATION IMDEP ITHRL ITHRU IROFF IMETH IRAMT IREFF 10 IR 30 50 100 GS000 IR001 10 1 NMDEP NMTHR NAMNT NCODE NAOFF @N NITROGEN 10 NI 30 50 25 FE001 GS000 @N RESIDUES RIPCN RTIME RIDEP 10 RE 100 1 20 HFRST HLAST HPCNP HPCNR 0 01001 100 0 @N HARVEST 10 HA NYERS NREPS START SDATE RSEED SNAME...... SMODEL ON GENERAL 11 GE 1 1 S 13127 2150 HYBRID-417 + MAY 7 MZCER @N OPTIONS WATER NITRO SYMBI PHOSP POTAS DISES CHEM TILL CO2 11 OP Y Y Y N N N Y M QN METHODS WTHER INCON LIGHT EVAPO INFIL PHOTO HYDRO NSWIT MESOM MESEV MESOL M E R S L R 1 G S 11 ME М QN MANAGEMENT PLANT IRRIG FERTI RESID HARVS 11 MA r r r m @N OUTPUTS FNAME OVVEW SUMRY FROPT GROUT CAOUT WAOUT NIOUT MIOUT DIOUT VBOSE CHOUT OPOUT 11 OU N Y 1 Y Y Y Y N Y N

@ AUTOMATIC MANAGEMENT @N PLANTING PFRST PLAST PH2OL PH2OU PH2OD PSTMX PSTMN 11 PL 13001 13001 40 100 30 40 10 @N IRRIGATION IMDEP ITHRL ITHRU IROFF IMETH IRAMT IREFF 11 IR 30 50 100 GS000 IR001 10 1 NMDEP NMTHR NAMNT NCODE NAOFF @N NITROGEN 11 NI 30 50 25 FE001 GS000 @N RESIDUES RIPCN RTIME RIDEP 11 RE 100 1 20 HFRST HLAST HPCNP HPCNR @N HARVEST 0 01001 100 11 HA 0 @N GENERAL NYERS NREPS START SDATE RSEED SNAME...... SMODEL 1 1 S 13127 2150 ARUN-2 + MAY 7 WATER NITRO SYMBI PHOSP FOTAS DISES CHEM TILL CO2 Y Y Y N N N N Y M 12 GE MZCER @N OPTIONS 12 OP WTHER INCON LIGHT EVAPO INFIL PHOTO HYDRO NSWIT MESOM MESEV MESOL QN METHODS 12 ME M M E R S L R 1 G S @N MANAGEMENT PLANT IRRIG FERTI RESID HARVS 12 MA r r r r М @N OUTPUTS FNAME OVVEW SUMRY FROPT GROUT CAOUT WAOUT NIOUT MIOUT DIOUT VBOSE CHOUT OPOUT 12 OU N Y Y 1 Y Y Y Y N Y N Y @ AUTOMATIC MANAGEMENT @N PLANTING PFRST PLAST PH2OL PH2OU PH2OD PSTMX PSTMN 12 PL 13001 13001 40 100 30 40 10 @N IRRIGATION IMDEP ITHRL ITHRU IROFF IMETH IRAMT IREFF 12 IR 30 50 100 GS000 IR001 10 1 @N NITROGEN NMDEP NMTHR NAMNT NCODE NAOFF 12 NI 30 50 25 FE001 GS000 RIPCN RTIME RIDEP QN RESIDUES 12 RE 100 1 20 @N HARVEST HFRST HLAST HPCNP HPCNR 12 HA 0 01001 100 0

Appendix	18.	'W	file'	used	in	spring	maize	experiment	for	running	01NP1301.	MZX
		exp	erim	ent fil	e							

Weather year: 2013

@ INSI	LAT	LONG ELEV	TAV AMP	REFHT WNDHT
MUNA	27.417	84.217 154	-99.0 -99.0	-99.0 -99.0
@DATE	SRAD	TMAX	TMIN	RAIN
13097	25.5	35.0	16.4	0.0
13098	25.1	35.5	18.2	0.0
13099	24.6	35.8	20.6	0.0
13100	25.4	37.8	21.8	0.0
13101	25.0	39 0	194	0 0
13102	25.6	38.8	19.6	0.0
13103	26.4	39.0	19.6	0.0
13104	25.1	37.5	19.0	0.0
13105	25.1	35.8	20.0	0.0
13106	25.1	34.0	19.6	0.0
13107	24.5	31.2	19.4	0.0
13108	23.5	32.8	20.2	0.0
13109	26.4	33 0	18 6	0 0
13110	16 6	32.8	20.8	0.0
13111	4 5	21 8	17 8	0 0
13112	18 1	295	19 0	0.0
13113	20 5	30 6	18 4	0 0
13114	18 2	28 6	21 2	0.0
13115	23 2	32 0	21.2	0.0
13116	20.2	33 4	22.6	0.0
13117	24.5	35 0	22.0	0.0
13118	20.0	34 8	22.0	0.0
13119	23.5	33 0	24 6	0.0
13120	25.3	34 8	23.8	0.0
13121	25.5	32 4	23.0	0.0
13122	20.2	30.8	23.4	0.0
13122	23.5	36.8	18 4	0.0
13124	27.0	37.8	18 8	0.0
13125	26.4	34 8	20.6	11 2
13126	26.4	33.8	23.4	15 0
13127	25.0	33.8	24 2	
13128	23.2	33.8	25.6	0.0
13129	23.0	35.0	25.0	0 0
13130	25.0	36.8	24 8	0.0
13131	26.4	38.8	23.6	0 0
13132	26.9	34.8	22.2	0.0
13133	18.7	36.0	22.0	0.0
13134	25 3	36.0	23.0	83 5
13135	24.4	33.0	21.2	2.5
13136	22.6	33.8	21.6	0.0
13137	27 2	33.8	23 4	1 0
13138	24 9	34 8	26.0	0 0
13139	23.4	32 8	24 4	49 0
13140	17 4	33 0	24 4	55 6
13141	18.5	33.0	26.6	5.6
13142	17 1	33.6	24.4	45.0
13143	201	34 4	24 6	6.5
13144	23.1	35 0	26.2	17.0
13145	23.4	34.2	29.8	32.2
	20.1	J 1 • C	22.0	~

@DATE	SRAD	TMAX	TMIN	RAIN
13146	17.2	31.8	23.6	0.0
13147	17.4	35.0	24.6	0.0
13148	26.0	34.8	23.6	59.2
13149	25.3	32.8	25.2	12.5
13150	12.9	25.8	23.2	22.0
13151	4.9	33.0	23.2	17.4
13152	15.9	36.0	24.6	0.0
13153	26.4	36.5	27.4	0.0
13154	24.7	35.6	26.4	0.0
13155	21.7	34.8	26.4	12.7
13156	22.0	34.8	24.2	48.4
13157	21.6	33.6	22.8	38.0
13158	19.5	35.8	26.8	0.0
13159	21.5	34.0	24.4	0.0
13160	19.1	35.8	26.8	0.0
13161	20.9	35 0	28.4	0 0
13162	17.7	36.8	27.4	0.0
13163	17 2	36.9	26.4	0 0
13164	24 7	35 0	26.4	8 0
13165	21.7	31 6	25.6	8 6
13166	11 6	33 0	24.6	98 2
13167	12 6	26.0	24.0	156 0
13169	6 1	20.0	27.2	25 0
13160	0.1	24.0	22.0	23.0
12170	2.2 12.7	29.0	23.4	2.0
13170 13171	10 /	33.0 33.0	24.4	2.0
13172	17.2	24.4	23.4	2.0
13172	1 . 2	34.4	21.2	30.0
13174	15.2	20.0	20.0	
13174	15.4	30.8	23.0	14.0
13175	8.8	34.2	25.0	0.0
13176	20.7	32.4	26.8	
13177	15.4	33.0	27.2	15.0
13178	10.0	33.0	26.4	0.0
13179	13.2	29.0	25.8	50.2
13180	6.6	33.8	27.0	17.4
13181	16.2	33.8	26.0	10.0
13182	9.8	34.0	27.0	0.0
13183	17.6	34.8	26.4	40.0
13184	18.9	33.8	27.4	0.0
13185	15.4	32.2	25.4	0.0
13186	12.8	31.0	26.4	0.0
13187	10.8	32.0	25.4	70.0
13188	13.1	32.8	25.6	195.0
13189	11.5	31.8	25.0	102.0
13190	12.6	31.8	25.2	156.0
13191	12.1	31.8	25.8	113.0
13192	13.3	34.8	23.0	0.0
13193	20.3	35.8	21.8	29.0
13194	17.1	32.2	26.8	7.0
13195	19.0	35.2	27.2	15.0
13196	19.8	34.8	27.2	10.0
13197	18.3	33.8	27.4	5.0
13198	16.6	31.8	26.4	0.0
13199	11.3	31.8	25.6	30.0
13200	9.0	32.8	25.6	0.0
13201	15.7	32.8	26.4	35.0

@DATE	SRAD	TMAX	TMIN	RAIN
13202	20.4	35.8	26.4	65.0
13203	14.3	31.0	27.6	5.0
13204	22.0	36.8	26.4	1.5
13205	19.7	34.8	27.2	3.0
13206	15.0	32.8	25.6	5.0
13207	21.9	34.2	26.4	5.0
13208	18.1	33.0	23.0	0.0
13209	14.0	33.8	26.0	0.0
13210	19.5	34.0	27.2	0.0
13211	20.5	35.0	28.0	0.0
13212	20.6	34.0	27.0	0.0
13213	17.8	34.0	24.6	17.5
13214	19.5	34.8	26.2	7.0
13215	20.2	35.0	27.4	17.0
13216	20.2	32.0	25.8	135.0
13217	15.3	33.8	25.0	0.0
13218	18.6	33.2	25.8	0.0
13219	15.6	33.8	25.8	13.0
13220	16.2	32.0	28.2	24.0
13221	17.7	32.0	26.2	29.4
13222	13.4	33.0	25.4	80.0
13223	17.0	32.4	25.2	175.0
13224	18.0	34.0	26.4	0.0
13225	20.5	34.8	24.0	0.0
13226	22.3	33.0	25.6	200.0
13227	11.3	33.8	24.4	0.0
13228	20.6	32.8	24.6	0.0
13229	15.8	34.8	25.6	0.0
13230	19.2	34.8	25.4	0.0
13231	20.2	34.0	26.8	0.0
13232	18.3	31.4	26.2	47.0
13233	9.9	33.6	25.0	0.0
13234	19.7	34.8	25.6	0.0
13235	20.9	34.8	27.0	0.0
13236	20.7	35.0	26.8	0.0
13237	21.4	31.8	24.8	38.2
13238	11.8	29.0	24.6	127.0
13239	0.4	31.0	23.2	9.0

*WEATHER	DATA	:	2011
^WEATHER	DATA	:	ZUII

@ INSI	LAT	LONG ELEV	TAV AMI	P REFHT WNDHT	
MUN2	27.417	84.133 154	25.7 7.6	5 -99.0 -99.0	
@DATE	SRAD	TMAX	TMIN	RAIN	
11097	24.9	39.8	21.8	0.0	
11098	25.8	40.4	23.2	0.0	
11099	24.2	40.5	24.5	1.0	
11100	25.4	40.8	24.4	1.7	
11101	24.8	40.5	24.7	1.4	
11102	23.3	41.3	25.6	2.5	
11103	19.2	33.8	25.4	5.4	
11104	25.7	39.0	23.3	0.3	
11105	27.0	37.2	23.1	0.0	
11106	26.0	39.6	22.9	0.0	
11107	24.6	41.8	24.2	1.2	
11108	17.1	35.8	27.3	1.8	

@DATE	SRAD	TMAX	TMIN	RAIN	
11109	22.6	35.4	24.7	3.1	
11110	26.9	39.8	23.2	0.0	
11111	27.4	41.1	24.0	0.0	
11112	27.9	40.8	24.5	0.0	
11113	27.0	42.0	24.8	0.0	
11114	25.9	40.8	26.2	0.0	
11115	22.9	33.3	24.5	7.5	
11116	25.8	31.3	21.9	0.0	
11117	25.7	36.6	23.2	0.1	
11118	25.7	37.7	23.8	0.8	
11119	23.3	32.9	24.2	1.5	
11120	16.1	33.1	24.4	0.1	
11121	24.9	34.2	23.4	3.8	
11122	26.5	33.5	23.4	0.0	
11123	26.5	37.3	23.3	0.5	
11124	26.0	32.2	24.3	0.0	
11125	26.1	35.1	24.1	0.0	
11126	25.2	38.1	25.1	0.0	
11127	7.5	35.3	24.9	0.0	
11128	26.4	36.8	24.9	0.0	
11129	26.4	35.2	24.1	0.0	
11130	24.6	41.4	25.1	0.2	
11131	26.2	38.8	26.1	2.4	
11132	25.7	34.7	26.1	0.0	
11133	17.5	40.3	25.6	0.0	
11134	26.7	36.1	24.8	0.8	
11135	26.7	37.3	24.9	0.0	
11136	26.4	39.9	25.6	23.3	
11137	26.0	35.4	27.2	21.5	
11138	25.1	30.7	26.3	28.4	
11139	22.7	35.1	24.6	7.0	
11140	24.1	37.8	23.8	0.0	
11141	19.1	34.4	25.3	0.0	
11142	22.5	34.9	26.0	0.2	
11143	26.4	38.1	25.4	0.0	
11144	23.3	36.8	27.0	0.0	
11145	23.5	34.0	27.4	5.5	
11146	16.1	34.0	26.2	20.9	
1114/	19.0	33.7	26.1	2.8	
11148	23.7	31.5	26.0	0.0	
11150	24.2	39.2	24.9	0.0	
11151	21.6	34.9	26.1 26.0	0.0	
11150	21./ 25.2	33.U	∠6.U	0.0	
11152 11152	23.3	30.1 20 0	25.1	0.0	
11154	20.5	36.U	26.U	2.9	
11155	20.0 27 6	3∠.4 20 ⊑	∠J.Ŭ 25.2	4.0 0.0	
1115C	21.0	30.3	23.3 26 1	0.0	
11157	20.1 26 1	27.7 20 1	20.4	\bigcirc \bigcirc \bigcirc	
11150	20.1 0 1	ンツ・4 つち の	20.0	ン・Z 2 5	
11150	ン・4 つつ つ	37 0	20.3	2.3 0 5	
11160	∠∠.∠ 01 ⊑	34.9 20 F	20.0	0.0	
11161	21.J 25 0	30.3	20.0	0.0	
11162	2J.Z 22 6	40.0 27 /	∠0.0 27 7		
11163	22.0 25 5	27.4 20 0	∠/•/ 27 1	0.0	
1116/	23.5	30.0 39.1	∠/•⊥ 27 2	2 5	
TTT04	22 . J	J9.1	۷١.۷	2.J	

0.53.00					
ODATE	SRAD	TMAX	TMIN	RAIN	
11165	25.0	37.5	27.3	0.9	
11166	23.4	34.5	27.0	0.8	
1116/	25.0	34.9	26.6	1.9	
11168	22.3	34.9	27.0	3.6	
11169	9.6	34.0	26.2	0.3	
11170	5.1	34.7	26.0	19.8	
11171	20.5	33.4	25.5	2.2	
11172	23.5	35.8	27.0	5.6	
11173	21.9	37.7	27.1	0.9	
11174	23.1	36.1	26.8	10.1	
11175	20.9	36.5	26.4	41.2	
11176	15.6	34.4	26.6	29.4	
11177	20.5	35.6	26.6	15.9	
11178	22.4	37.5	25.8	24.1	
11179	16.3	34.9	25.6	6.4	
11180	8.9	34.9	25.9	9.7	
11181	5.0	29.9	24.3	41.6	
11182	8.7	32.5	24.3	5.8	
11183	20.3	34.0	24.9	38.1	
11184	13.0	32.0	26.2	13.5	
11185	20.2	36.0	25.3	28.4	
11186	14.5	31.8	25.1	0.0	
11187	19.0	35.6	24.9	0.0	
11188	13.9	34.2	24.6	0.4	
11189	18.6	34.0	25.3	0.0	
11190	24.5	32.2	25.2	27.3	
11191	22.1	32.0	25.4	3.5	
11192	21.3	32.7	25.5	9.3	
11193	17.9	35.1	25.6	8.8	
11194	16.5	35.0	25.5	19.9	
11195	18.0	33.0	25.5	7.9	
11196	19.0	31.9	25.3	0.2	
11197	21.3	34.6	25.1	0.0	
11198	21.0	33.8	25.0	3.1	
11199	23.9	36.2	25.3	8.1	
11200	18.2	34.5	25.9	33.7	
11201	10.8	32.3	27.1	13.6	
11202	21.7	33.0	25.1	8.7	
11203	16.8	34.3	25.7	7.7	
11204	15.0	33.3	25.2	0.0	
11205	18.7	35.1	25.0	1.7	
11206	19.3	34.4	25.5	0.1	
11207	16.3	34.7	25.6	0.5	
11208	4.5	30.1	25.8	39.3	
11209	11.3	31.3	25.6	0.0	
11210	16.4	30.9	25.9	0.2	
11211	15.2	32.3	25.4	10.6	
11212	12.4	31.3	26.4	29.9	
11213	19.2	31.9	26.1	2.9	
11214	7.5	33.5	26.2	22.8	
11215	19.6	30.4	25.9	6.8	
11216	18.6	30.5	25.4	13.3	
11217	13.8	31.4	26.0	49.3	
11218	19.5	30.1	25.1	26.8	
11219	20.2	32.1	24.3	14.5	
11220	20.1	30.9	24.8	1.9	

SDALD JARA JARA JARA JARA JARA 11221 22.1 31.5 23.8 0.1 11223 16.5 31.6 24.9 4.3 11224 16.5 31.6 24.9 4.3 11225 19.8 31.2 24.9 7.9 11226 15.1 28.4 23.0 1.2 11227 10.9 27.9 24.2 6.5 11228 16.7 29.3 24.1 8.2 11229 9.8 28.7 25.6 18.7 11230 12.2 29.6 23.9 0.0 11231 11.8 30.1 23.3 0.1 11234 17.0 30.3 25.3 17.9 11235 8.3 32.1 24.8 30.4 11236 19.4 30.0 25.9 12.9 11238 22.0 30.9 23.9 0.0 11242 20.2 33.8	פיעעם	CDVD	TMAY	TMTN	ΡλτΝ	
1122219.031.523.00.11122316.531.624.94.31122416.530.423.92.51122519.831.224.97.91122615.128.423.01.21122710.927.924.26.51122816.729.324.18.2112299.828.725.618.71123012.229.623.90.01123111.830.123.30.11123223.532.323.40.31123322.231.624.920.11123417.030.325.317.9112358.332.124.830.41123619.430.025.012.91123720.129.925.215.71123822.030.923.90.01124020.831.724.53.01124121.632.024.90.21124220.233.825.25.51124421.231.124.70.21124520.830.824.11.11124621.430.723.90.51124722.231.424.03.01124822.430.824.82.91124916.831.024.814.01124121.631.524.412.41125110.3 <t< td=""><td>11221</td><td>22 1</td><td>21 5</td><td>73 0 TIMITIN</td><td></td><td></td></t<>	11221	22 1	21 5	73 0 TIMITIN		
1122215.031.524.111.01122416.531.624.94.31122519.831.224.97.91122615.128.423.01.21122710.927.924.26.51122816.729.324.18.2112299.828.725.618.71123012.229.623.90.01123121.830.123.30.11123223.532.323.40.31123322.231.624.920.11123417.030.325.317.9112358.332.124.830.41123720.129.925.215.71123822.030.923.90.01124020.831.724.53.01124121.632.024.90.21124220.233.825.25.51124316.731.425.54.41124421.231.124.70.21124520.830.824.11.11124621.430.723.90.51124822.430.824.82.91124916.831.524.412.4125016.331.524.412.4125110.330.024.98.01125418.931.724.50.71125531.7	11221	10 0	31.5 31.5	23.0 24 1	U.I 11 0	
1122310.310.421.91.31122416.530.423.92.51122615.128.423.01.21122710.927.924.26.51122816.729.324.18.21123012.229.623.90.01123111.830.123.30.11123223.532.323.40.31123322.231.624.920.11123417.030.325.317.9112358.332.124.830.41123619.430.025.012.91123720.129.925.215.71123822.030.923.90.01124020.831.724.53.01124121.632.024.90.21124220.233.825.25.51124316.731.425.54.41124421.231.124.70.21124520.830.824.11.11124621.430.723.90.51124722.231.424.03.01124822.430.824.819.01124916.831.024.98.01124110.330.024.98.01124221.231.425.115.81124319.030.624.315.01124421.2<	11222	16 5	31 6	24.1	1 3	
11224 10.3 30.4 20.9 2.3 11226 15.1 28.4 23.0 1.2 11227 10.9 27.9 24.2 6.5 11228 16.7 29.3 24.1 8.2 11229 9.8 28.7 25.6 18.7 11230 12.2 29.6 23.9 0.0 11231 11.8 30.1 23.3 0.1 11232 23.5 32.3 23.4 0.3 11233 22.2 31.6 24.9 20.1 11234 17.0 30.3 25.3 17.9 11235 8.3 32.1 24.8 30.4 11236 19.4 30.0 25.0 12.9 11237 20.1 29.9 25.2 15.7 11238 22.0 30.9 23.9 0.0 11240 20.8 31.7 24.5 3.0 11241 21.6 32.0 24.9 0.2 11242 20.2 33.8 25.2 5.5 11243 16.7 31.4 25.5 4.4 11244 21.2 31.1 24.7 0.2 11244 21.2 30.8 24.8 14.0 11244 21.4 30.7 23.9 0.5 11244 21.4 30.7 23.9 0.5 11244 21.4 30.6 24.8 14.0 11244 21.6 31.5 24.4 12.4 11245	11223	16.5	30 4	24.9	4.5	
1122512.1012.1212.121122710.927.924.26.51122816.729.324.18.21123012.229.623.90.01123111.830.123.30.11123223.532.323.40.31123322.231.624.920.11123417.030.325.317.9112358.332.124.830.41123619.430.025.012.91123822.030.923.90.01123925.631.824.20.01124121.632.024.90.21124220.233.825.25.51124316.731.425.54.41124421.231.124.70.21124520.830.723.90.51124421.231.124.70.21124520.830.824.11.11124621.430.723.90.51124722.231.424.03.01124822.430.824.82.91124916.331.024.98.01125016.331.024.98.01125110.330.024.98.01125216.430.425.52.71125418.931.024.00.81125521.531.7<	11224	10.5	31 2	23.9	2.J 7 9	
1122010.120.724.26.51122816.729.324.18.2112299.828.725.618.71123012.229.623.90.01123111.830.123.30.11123223.532.323.40.31123322.231.624.920.11123417.030.325.317.9112358.332.124.830.41123720.129.925.215.71123822.030.923.90.01124020.831.724.53.01124121.632.024.90.21124220.233.825.25.51124316.731.425.54.41124421.231.124.70.21124520.830.824.11.11124621.430.723.90.51124722.231.424.03.01124822.430.824.814.01125016.331.524.412.41125110.330.024.98.01125216.430.424.66.81125319.030.624.315.01125416.331.524.412.41125521.531.724.50.71125621.032.724.50.71125521.5<	11225	15 1	28 4	23.0	1 2	
1122710.921.20.31122816.729.324.18.21123012.229.623.90.01123111.830.123.30.11123223.532.323.40.31123322.231.624.920.11123417.030.325.317.9112358.332.124.830.41123619.430.025.012.91123822.030.923.90.01123925.631.824.20.01124020.831.724.53.01124121.632.024.90.21124220.233.825.25.51124316.731.425.54.41124421.231.124.70.21124520.830.824.11.11124621.430.723.90.51124722.231.424.03.01124822.430.824.82.91124916.331.524.412.41125110.330.024.98.01125216.430.424.66.81125319.030.624.98.01125418.931.024.00.81125521.531.724.50.71126621.032.724.50.71125713.131.4	11220	10.0	20.4	23.0	1.2	
1122010.723.324.1 0.2 1122012.229.623.90.01123111.830.123.30.11123223.532.323.40.31123322.231.624.920.11123417.030.325.317.9112358.332.124.830.41123720.129.925.215.71123822.030.923.90.01124020.831.724.53.01124220.233.825.25.51124316.731.425.54.41124421.632.024.90.51124520.830.824.11.11124621.430.723.90.51124316.731.425.54.41124421.231.124.70.21124520.830.824.11.11124621.430.723.90.51124722.231.424.03.01124822.430.824.82.91124916.331.524.412.41125016.331.524.412.41125110.330.024.98.01125216.430.424.66.81125319.030.624.315.01125418.931.024.00.81125521.5	11227	10.9	27.9	24.2	0.0	
11230 23.0 22.0 23.0 10.7 11231 11.8 30.1 23.3 0.1 11232 23.5 32.3 23.4 0.3 11232 23.5 32.3 23.4 0.3 11234 17.0 30.3 25.3 17.9 11235 8.3 32.1 24.8 30.4 11236 19.4 30.0 25.0 12.9 11237 20.1 29.9 25.2 15.7 11238 22.0 30.9 23.9 0.0 11240 20.8 31.7 24.5 3.0 11241 21.6 32.0 24.9 0.2 11242 20.2 33.8 25.2 5.5 11244 21.2 31.1 24.7 0.2 11242 20.2 33.8 24.1 1.1 11244 21.2 31.1 24.7 0.2 11244 21.2 31.1 24.7 0.2 11244 21.2 31.4 24.0 3.0 11244 21.2 31.4 24.0 3.0 11247 22.2 31.4 24.8 2.9 11248 22.4 30.8 24.8 2.9 11250 16.3 31.5 24.4 12.4 11251 10.3 30.0 24.9 8.0 11255 15.3 17.7 24.5 0.7 11256 10.3 31.7 24.5 0.7 11256 <	11220	10.7	29.3	24.1	0.2 10 7	
1123011.223.023.90.01123111.830.123.30.11123223.532.323.40.31123322.231.624.920.11123417.030.325.317.9112358.332.124.830.41123619.430.025.012.91123720.129.925.215.71123822.030.923.90.01124020.831.724.53.01124121.632.024.90.21124220.233.825.25.51124316.731.425.54.41124421.231.124.70.21124520.830.824.11.11124621.430.723.90.51124722.231.424.03.01124822.430.824.11.11124421.231.524.412.41125110.330.024.98.01125216.430.424.66.81125319.030.624.315.01125418.931.024.00.81125521.531.724.52.71125621.032.724.52.71125713.131.425.115.81125816.130.024.61.51125917.7<	11229	9.0 12.2	20.7	23.0	10.7	
1123111.030.123.30.11123222.532.323.40.31123322.231.624.920.11123417.030.325.317.9112358.332.124.830.41123619.430.025.012.91123720.129.925.215.71123822.030.923.90.01124020.831.724.53.01124121.632.024.90.21124220.233.825.25.51124316.731.425.54.41124421.231.124.70.21124520.830.824.11.11124621.430.723.90.51124722.231.424.03.01124822.430.824.814.01125016.331.524.412.41125110.330.024.98.01125216.430.424.66.81125319.030.624.315.01125418.931.024.00.81125521.531.724.52.71125616.130.024.61.51125917.729.723.910.81125521.531.724.52.71125617.729.723.910.81125917.7 <td>11230</td> <td>11 0</td> <td>29.0</td> <td>23.9</td> <td>0.0</td> <td></td>	11230	11 0	29.0	23.9	0.0	
1123223.332.323.40.31123322.231.624.920.11123417.030.325.317.9112358.332.124.830.41123619.430.025.012.91123720.129.925.215.71123822.030.923.90.01124020.831.724.53.01124121.632.024.90.21124220.233.825.25.51124316.731.425.54.41124421.231.124.70.21124520.830.824.11.11124621.430.723.90.51124722.231.424.03.01124822.430.824.82.91124916.831.024.814.01125016.331.524.412.41125110.330.024.98.01125216.430.424.66.81125319.030.624.315.01125418.931.024.00.81125521.531.724.50.71125621.032.724.52.71125713.131.425.115.81125816.130.024.61.51125917.729.723.910.81125816.1 <td>11221</td> <td>11.0 22 5</td> <td>20.⊥ 22.2</td> <td>23.3</td> <td>0.1</td> <td></td>	11221	11.0 22 5	20.⊥ 22.2	23.3	0.1	
11233 22.2 31.6 24.9 20.1 1123417.0 30.3 25.3 17.9 11235 8.3 32.1 24.8 30.4 11236 19.4 30.0 25.0 12.9 11237 20.1 29.9 25.2 15.7 11238 22.0 30.9 23.9 0.0 11239 25.6 31.8 24.2 0.0 11240 20.8 31.7 24.5 3.0 11241 21.6 32.0 24.9 0.2 11242 20.2 33.8 25.2 5.5 11243 16.7 31.4 25.5 4.4 11244 21.2 31.1 24.7 0.2 11245 20.8 30.8 24.1 1.1 11246 21.4 30.7 23.9 0.5 11247 22.2 31.4 24.0 3.0 11248 22.4 30.8 24.8 2.9 11249 16.8 31.0 24.9 8.0 11250 16.3 31.5 24.4 12.4 11251 10.3 30.0 24.9 8.0 11252 16.4 30.4 24.6 6.8 11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 2.7 11257 13.1 31.4 25.1 15.8 11258 16.1 30.0 24.6 <	11222	23.3	JZ.J 21 G	23.4	0.5	
1123417.030.327.317.9112358.332.124.830.41123619.430.025.012.91123720.129.925.215.71123822.030.923.90.01124020.831.724.53.01124121.632.024.90.21124220.233.825.25.51124316.731.425.54.41124421.231.124.70.21124520.830.824.11.11124621.430.723.90.51124722.231.424.82.91124822.430.824.82.91124916.831.024.814.01125016.331.524.412.41125110.330.024.98.01125216.430.424.66.81125319.030.624.315.01125418.931.024.00.81125521.531.724.50.71125621.032.724.52.71125713.131.425.115.81125816.130.024.61.51125917.729.723.910.81125816.130.924.434.21126018.230.123.916.41126115.8 <td>11223</td> <td>17 0</td> <td>20.2</td> <td>24.9</td> <td>20.1</td> <td></td>	11223	17 0	20.2	24.9	20.1	
11235 0.5 32.1 24.6 30.4 11237 20.1 29.9 25.0 12.9 11238 22.0 30.9 23.9 0.0 11239 25.6 31.8 24.2 0.0 11240 20.8 31.7 24.5 3.0 11241 21.6 32.0 24.9 0.2 11242 20.2 33.8 25.2 5.5 11243 16.7 31.4 25.5 4.4 11244 21.2 31.1 24.7 0.2 11245 20.8 30.8 24.1 1.1 11246 21.4 30.7 23.9 0.5 11247 22.2 31.4 24.0 3.0 11248 22.4 30.8 24.8 2.9 11249 16.8 31.0 24.8 14.0 11250 16.3 31.5 24.4 12.4 11251 10.3 30.0 24.9 8.0 11252 16.4 30.4 24.6 6.8 11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 23.9 10.8 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11261 15.8 27.9 24.4 34.2 11261 15.8 27.9 24.4 <td>11234</td> <td>17.0</td> <td>20.2</td> <td>23.3</td> <td>17.9</td> <td></td>	11234	17.0	20.2	23.3	17.9	
1123019.4 30.0 23.0 12.9 11237 20.1 29.9 25.2 15.7 11238 22.0 30.9 23.9 0.0 11240 20.8 31.7 24.5 3.0 11241 21.6 32.0 24.9 0.2 11242 20.2 33.8 25.2 5.5 11243 16.7 31.4 25.5 4.4 11244 21.2 31.1 24.7 0.2 11245 20.8 30.8 24.1 1.1 11246 21.4 30.7 23.9 0.5 11247 22.2 31.4 24.8 2.9 11248 22.4 30.8 24.8 2.9 11250 16.3 31.5 24.4 12.4 11251 10.3 30.0 24.9 8.0 11252 16.4 30.4 24.6 6.8 11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 2.7 11256 11.0 32.7 24.5 2.7 11256 16.1 30.0 24.6 1.5 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 <	11235	0.3	32.1	24.0	30.4	
1123720.129.920.210.01123822.0 30.9 23.9 0.0 1124020.8 31.7 24.5 3.0 1124121.6 32.0 24.9 0.2 1124220.2 33.8 25.2 5.5 1124316.7 31.4 25.5 4.4 1124421.2 31.1 24.7 0.2 1124520.8 30.8 24.1 1.1 1124621.4 30.7 23.9 0.5 1124722.2 31.4 24.0 3.0 1124822.4 30.8 24.8 2.9 1124916.8 31.0 24.8 14.0 1125016.3 31.5 24.4 12.4 1125110.3 30.0 24.9 8.0 1125216.4 30.4 24.6 6.8 1125319.0 30.6 24.3 15.0 1125418.9 31.0 24.0 0.8 1125521.5 31.7 24.5 2.7 1125621.0 32.7 24.5 2.7 1125816.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 1126018.2 30.1 23.9 10.8 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 <	11230 11227	19.4	30.0	25.0	12.9	
11230 22.0 30.9 $2.5.9$ 0.0 11240 20.8 31.7 24.2 0.0 11241 21.6 32.0 24.9 0.2 11242 20.2 33.8 25.2 5.5 11244 21.2 31.4 25.5 4.4 11244 21.2 31.1 24.7 0.2 11245 20.8 30.8 24.1 1.1 11246 21.4 30.7 23.9 0.5 11247 22.2 31.4 24.6 3.0 11248 22.4 30.8 24.8 2.9 11250 16.3 31.5 24.4 12.4 11251 10.3 30.0 24.9 8.0 11252 16.4 30.4 24.6 6.8 11255 21.5 31.7 24.5 0.7 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11256 21.0 32.7 24.5 2.7 11258 16.1 30.0 24.6 1.5 11258 16.1 30.0 24.6 1.5 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11264 12.0 29.9 24.3 0.3 11265 </td <td>11000</td> <td>20.1 22 0</td> <td>∠y.y 20 0</td> <td>23.2</td> <td>13./</td> <td></td>	11000	20.1 22 0	∠y.y 20 0	23.2	13./	
11240 20.8 31.7 24.5 3.0 11241 21.6 32.0 24.9 0.2 11242 20.2 33.8 25.2 5.5 11243 16.7 31.4 25.5 4.4 11244 21.2 31.1 24.7 0.2 11245 20.8 30.8 24.1 1.1 11246 21.4 30.7 23.9 0.5 11247 22.2 31.4 24.0 3.0 11248 22.4 30.8 24.8 2.9 11249 16.8 31.0 24.8 14.0 11250 16.3 31.5 24.4 12.4 11251 10.3 30.0 24.9 8.0 11252 16.4 30.4 24.6 6.8 11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11256 21.0 32.7 24.5 2.7 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11264 12.0 29.9 24.3 0.3 11266 12.5 29.2 24.0 14.5 <td>11220</td> <td>22.U 25.6</td> <td>30.9</td> <td>23.9 04 0</td> <td>0.0</td> <td></td>	11220	22.U 25.6	30.9	23.9 04 0	0.0	
1124020.0 31.7 24.3 3.0 1124121.6 32.0 24.9 0.2 1124220.2 33.8 25.2 5.5 1124316.7 31.4 25.5 4.4 11244 21.2 31.1 24.7 0.2 1124520.8 30.8 24.1 1.1 11246 21.4 30.7 23.9 0.5 11247 22.2 31.4 24.0 3.0 11248 22.4 30.8 24.8 2.9 1124916.8 31.0 24.8 14.0 1125016.3 31.5 24.4 12.4 1125110.3 30.0 24.9 8.0 1125216.4 30.4 24.6 6.8 1125319.0 30.6 24.3 15.0 1125418.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11257 13.1 31.4 25.1 15.8 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 <tr< td=""><td>11240</td><td>20.0</td><td>31.8 21 7</td><td>24.2 24 5</td><td>0.0</td><td></td></tr<>	11240	20.0	31.8 21 7	24.2 24 5	0.0	
11241 21.6 32.0 24.9 0.2 11242 20.2 33.8 25.2 5.5 11243 16.7 31.4 25.5 4.4 11244 21.2 31.1 24.7 0.2 11245 20.8 30.8 24.1 1.1 11246 21.4 30.7 23.9 0.5 11247 22.2 31.4 24.0 3.0 11248 22.4 30.8 24.8 2.9 11249 16.8 31.0 24.8 14.0 11250 16.3 31.5 24.4 12.4 11251 10.3 30.0 24.9 8.0 11252 16.4 30.4 24.6 6.8 11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11257 13.1 31.4 25.1 15.8 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5 <td>11240</td> <td>20.8</td> <td>31.7</td> <td>24.5</td> <td>3.0</td> <td></td>	11240	20.8	31.7	24.5	3.0	
11242 20.2 33.8 25.2 5.5 11243 16.7 31.4 25.5 4.4 11244 21.2 31.1 24.7 0.2 11245 20.8 30.8 24.1 1.1 11246 21.4 30.7 23.9 0.5 11247 22.2 31.4 24.0 3.0 11248 22.4 30.8 24.8 2.9 11249 16.8 31.0 24.8 14.0 11250 16.3 31.5 24.4 12.4 11251 10.3 30.0 24.9 8.0 11252 16.4 30.4 24.6 6.8 11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11257 13.1 31.4 25.1 15.8 11258 16.1 30.0 24.6 1.5 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5 <td>11241</td> <td>21.6</td> <td>32.0</td> <td>24.9</td> <td>U.Z</td> <td></td>	11241	21.6	32.0	24.9	U.Z	
11243 16.7 31.4 25.5 4.4 11244 21.2 31.1 24.7 0.2 11245 20.8 30.8 24.1 1.1 11246 21.4 30.7 23.9 0.5 11247 22.2 31.4 24.0 3.0 11248 22.4 30.8 24.8 2.9 11249 16.8 31.0 24.8 14.0 11250 16.3 31.5 24.4 12.4 11251 10.3 30.0 24.9 8.0 11252 16.4 30.4 24.6 6.8 11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11256 21.0 32.7 24.5 2.7 11257 13.1 31.4 25.1 15.8 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5 <td>11242</td> <td>20.2</td> <td>33.8</td> <td>25.2</td> <td>5.5</td> <td></td>	11242	20.2	33.8	25.2	5.5	
11244 21.2 31.1 24.7 0.2 11245 20.8 30.8 24.1 1.1 11246 21.4 30.7 23.9 0.5 11247 22.2 31.4 24.0 3.0 11248 22.4 30.8 24.8 2.9 11249 16.8 31.0 24.8 14.0 11250 16.3 31.5 24.4 12.4 11251 10.3 30.0 24.9 8.0 11252 16.4 30.4 24.6 6.8 11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11256 21.0 32.7 24.5 2.7 11256 11.3 31.4 25.1 15.8 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5 <td>11243</td> <td>16.7</td> <td>31.4</td> <td>25.5</td> <td>4.4</td> <td></td>	11243	16.7	31.4	25.5	4.4	
11245 20.8 30.8 24.1 1.1 11246 21.4 30.7 23.9 0.5 11247 22.2 31.4 24.0 3.0 11248 22.4 30.8 24.8 2.9 11249 16.8 31.0 24.8 14.0 11250 16.3 31.5 24.4 12.4 11251 10.3 30.0 24.9 8.0 11252 16.4 30.4 24.6 6.8 11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11256 21.0 32.7 24.5 0.7 11257 13.1 31.4 25.1 15.8 1258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5	11244	21.2	31.1	24./	0.2	
11246 21.4 30.7 23.9 0.5 11247 22.2 31.4 24.0 3.0 11248 22.4 30.8 24.8 2.9 11249 16.8 31.0 24.8 14.0 11250 16.3 31.5 24.4 12.4 11251 10.3 30.0 24.9 8.0 11252 16.4 30.4 24.6 6.8 11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11257 13.1 31.4 25.1 15.8 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5	11245	20.8	30.8	24.1		
11247 22.2 31.4 24.0 3.0 11248 22.4 30.8 24.8 2.9 11249 16.8 31.0 24.8 14.0 11250 16.3 31.5 24.4 12.4 11251 10.3 30.0 24.9 8.0 11252 16.4 30.4 24.6 6.8 11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11257 13.1 31.4 25.1 15.8 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5	11246	21.4	30.7	23.9	0.5	
11248 22.4 30.8 24.8 2.9 11249 16.8 31.0 24.8 14.0 11250 16.3 31.5 24.4 12.4 11251 10.3 30.0 24.9 8.0 11252 16.4 30.4 24.6 6.8 11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11257 13.1 31.4 25.1 15.8 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5	11247	22.2	31.4	24.0	3.0	
11249 16.8 31.0 24.8 14.0 11250 16.3 31.5 24.4 12.4 11251 10.3 30.0 24.9 8.0 11252 16.4 30.4 24.6 6.8 11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11257 13.1 31.4 25.1 15.8 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5	11248	22.4	30.8	24.8	2.9	
11250 16.3 31.5 24.4 12.4 11251 10.3 30.0 24.9 8.0 11252 16.4 30.4 24.6 6.8 11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11257 13.1 31.4 25.1 15.8 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5	11249	16.8	31.0	24.8	14.0	
11251 10.3 30.0 24.9 8.0 11252 16.4 30.4 24.6 6.8 11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11257 13.1 31.4 25.1 15.8 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5	11250	16.3	31.5	24.4	12.4	
11252 16.4 30.4 24.6 6.8 11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11257 13.1 31.4 25.1 15.8 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5	11251	10.3	30.0	24.9	8.0	
11253 19.0 30.6 24.3 15.0 11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11257 13.1 31.4 25.1 15.8 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5	11252	16.4	30.4	24.6	6.8	
11254 18.9 31.0 24.0 0.8 11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11257 13.1 31.4 25.1 15.8 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5	11253	19.0	30.6	24.3	15.0	
11255 21.5 31.7 24.5 0.7 11256 21.0 32.7 24.5 2.7 11257 13.1 31.4 25.1 15.8 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5	11254	18.9	31.0	24.0	0.8	
11256 21.0 32.7 24.5 2.7 11257 13.1 31.4 25.1 15.8 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5	11255	21.5	31.7	24.5	0.7	
11257 13.1 31.4 25.1 15.8 11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5	11256	21.0	32.7	24.5	2./	
11258 16.1 30.0 24.6 1.5 11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5	11257	13.1	31.4	25.1	15.8	
11259 17.7 29.7 23.9 10.8 11260 18.2 30.1 23.9 16.4 11261 15.8 27.9 24.4 34.2 11262 15.7 31.4 24.3 0.5 11263 8.7 30.9 24.8 0.2 11264 12.0 29.9 24.3 0.3 11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5	11258	16.1	30.0	24.6	1.5	
1126018.230.123.916.41126115.827.924.434.21126215.731.424.30.5112638.730.924.80.21126412.029.924.30.31126517.629.623.97.41126612.529.224.014.5	11259	⊥/./ 10 0	29.7	23.9	10.8	
1126115.827.924.434.21126215.731.424.30.5112638.730.924.80.21126412.029.924.30.31126517.629.623.97.41126612.529.224.014.5	11260	18.2	30.1	23.9	16.4	
1126215.731.424.30.5112638.730.924.80.21126412.029.924.30.31126517.629.623.97.41126612.529.224.014.5	11261	15.8	27.9	24.4	34.2	
112638.730.924.80.21126412.029.924.30.31126517.629.623.97.41126612.529.224.014.5	11262	15.7	31.4	24.3	0.5	
112.64 12.0 29.9 24.3 0.3 112.65 17.6 29.6 23.9 7.4 112.66 12.5 29.2 24.0 14.5	11263	8./	30.9	24.8	0.2	
11265 17.6 29.6 23.9 7.4 11266 12.5 29.2 24.0 14.5	11264	12.0	29.9	24.3	0.3	
11206 12.5 29.2 24.0 14.5	11265	17.6	29.6	23.9	7.4	
	11266	12.5	29.2	24.0	14.5	
11267 9.5 27.5 24.5 1.4	11267	9.5	27.5	24.5	1.4	
11268 12.0 28.3 23.9 9.6	11268	12.0	28.3	23.9	9.6	
11269 13.2 31.0 22.5 9.9	11269	13.2	31.0	22.5	9.9	
11270 18.1 29.6 22.2 0.0	11270	18.1	29.6	22.2	0.0	
112/1 19.4 30.7 23.9 0.0	11271	19.4	30.7	23.9	0.0	
11272 19.2 31.2 23.3 0.0	11272	19.2	31.2	23.3	0.0	
11273 20.9 30.6 23.9 0.0	11273	20.9	30.6	23.9	0.0	
11274 19.9 30.4 24.1 0.0	11274	19.9	30.4	24.1	0.0	
11275 18.5 30.1 23.6 0.0	11275	18.5	30.1	23.6	0.0	
<u>11276 19.9 30.1 21.9 0.0</u>	11276	19.9	30.1	21.9	0.0	

@DATE	SRAD	TMAX	TMIN	RAIN
11277	19.9	29.8	22.7	0.0
11278	20.0	31.1	21.8	0.0
11279	19.9	30.2	23.2	0.0
11280	19.8	29.3	22.6	0.0
11281	19.9	30.6	22.3	0.0
11282	19.6	31.3	23.2	0.0
11283	19.8	30.3	22.6	0.0
11284	19.6	31.0	23.6	0.0
11285	20.1	30.2	21.4	0.0
11286	19.2	30.2	21.5	0.0
11287	19.2	30.1	19.7	0.0
11288	18.0	29.8	21.9	0.0
11289	17.9	30.3	22.8	0.0
11290	17.9	28.6	22.6	0.0
11291	17.8	29.9	21.8	0.0
11292	18.2	30.0	21.5	0.0
11293	14.4	28.9	21.9	1.2
11294	17.5	28.4	21.7	0.7
11295	18.1	28.6	20.4	0.0
11297	18.3	29.1	21.0	0.0
11298	17.6	28.4	21.2	0.0
11299	17.3	28.1	20.8	0.0
11300	17.7	27.6	20.1	0.0
11301	17.5	27.4	19.3	0.0
11302	17.4	27.6	18.7	0.0
11303	17.5	27.0	20.5	0.0
11304	17.2	26.1	17.6	0.0
11305	16.4	27.3	18.3	0.0
11306	14.1	26.6	18.6	0.0

Weather	Data:	2008
NCUCIICI	Ducu.	2000

@ INSI	LAT	LONG ELEV	TAV AMP	REFHT WNDHT	
MUN 6	27.417	84.133 154	-99.0 -99.0	-99.0 -99.0	
@DATE	SRAD	TMAX	TMIN	RAIN	
08097	16.3	27.9	22.3	0.5	
08098	25.4	35.1	19.5	0.0	
08099	25.7	37.1	20.1	0.0	
08100	26.0	39.7	21.8	0.0	
08101	26.1	40.5	23.2	0.5	
08102	25.5	41.5	24.0	6.5	
08103	25.4	42.8	25.1	2.6	
08104	26.3	41.8	24.9	0.6	
08105	26.1	42.1	24.7	0.7	
08106	25.8	42.2	24.7	0.0	
08107	25.1	43.5	26.9	7.0	
08108	26.0	41.1	25.7	0.0	
08109	26.9	42.0	25.5	0.0	
08110	27.8	42.0	24.6	0.0	
08111	27.5	43.5	25.5	0.0	
08112	26.7	42.2	25.1	0.0	
08113	26.9	43.3	25.3	0.0	
08114	26.5	44.1	26.7	0.0	
08115	27.5	44.6	25.9	0.0	
08116	27.0	45.1	27.0	0.0	

08117 26.6 44.9 27.0 0.0 08118 27.1 43.6 28.8 0.3 08120 25.3 43.2 25.8 0.4 08121 24.9 43.6 26.4 0.0 08122 27.0 44.0 25.3 3.7 08123 27.3 45.8 26.9 7.0 08124 26.3 40.3 27.0 0.1 08125 24.3 42.1 26.0 1.2 08128 26.2 43.0 26.6 1.9 08129 26.2 43.0 26.6 1.9 08131 27.1 43.1 27.8 1.3 08132 23.2 42.6 26.0 0.0 08133 26.9 42.6 26.0 0.0 08133 26.4 43.6 28.7 9.2 08134 26.9 42.6 26	@DATE	SRAD	TMAX	TMIN	RAIN	
0811827.143.626.80.30811927.045.628.00.00812025.343.225.80.40812124.943.626.40.00812227.044.025.33.70812327.345.826.97.00812426.342.126.01.20812524.342.126.01.20812623.342.627.50.00812725.042.725.52.10812826.943.026.61.90813026.942.826.12.90813127.143.127.81.30813223.242.527.71.20813326.941.628.11.30813426.942.626.00.00813526.443.628.79.20813627.142.227.00.00813725.543.127.00.00813825.844.330.82.30813923.044.629.02.80814024.036.728.61.20814121.537.425.614.20814216.139.025.513.30814413.537.425.92.10814510.737.225.614.20814610.831.925.92.10814725.73	08117	26.6	44.9	27.0	0.0	
08119 27.0 45.6 28.0 0.0 08120 25.3 43.6 26.4 0.0 08121 24.9 43.6 26.4 0.0 08122 27.0 44.0 25.3 3.7 08123 27.3 45.8 26.9 7.0 08124 26.3 40.3 27.0 0.1 08125 24.3 42.6 27.5 0.0 08126 23.3 42.6 27.5 0.0 08129 26.2 43.0 26.6 1.9 08130 27.1 43.1 27.8 1.3 08131 27.1 43.1 27.8 1.3 08132 23.2 42.6 26.1 2.9 08133 25.9 41.6 28.1 1.3 08134 26.9 42.6 26.0 0.0 08135 25.8 43.1 27.0 0.0 08136 27.1 42.2 27.0 0.0 08137 25.5 43.1 27.0 0.0	08118	27.1	43.6	26.8	0.3	
08121 24,9 43,6 25,8 0.4 08122 27,0 44,0 25,3 3.7 08123 27,3 45,8 26,9 7.0 08124 26,3 42,1 26,0 1.2 08125 24,3 42,1 26,0 1.2 08124 25,3 42,7 25,5 2.1 08128 26,9 43,0 26,2 0.2 08130 26,9 42,8 26,1 2.9 08131 27,1 44,6 28,1 1.3 08132 23,2 42,5 27,7 1.2 08133 26,9 41,6 28,1 1.3 08134 26,9 41,6 28,7 9.2 08134 26,9 42,6 26,0 0.0 08133 26,4 43,6 28,7 9.2 08134 25,5 43,1 27,0 0.0 08133 25,8 44,3 30,8 2.3 08140 24,0 36,7 28,6 1.2	08119	27.0	45.6	28.0	0.0	
08121 24.9 43.6 26.4 0.0 08122 27.0 44.0 25.3 3.7 08124 26.3 40.3 27.0 0.1 08125 24.3 42.1 26.0 1.2 08126 23.3 42.6 27.5 0.0 08127 25.0 42.7 25.5 2.1 08128 26.9 43.0 26.6 1.9 08129 26.2 43.0 26.6 1.2 08131 27.1 43.1 27.8 1.3 08132 23.2 42.5 27.7 1.2 08133 26.9 42.6 28.0 0.0 08133 26.9 42.6 28.7 9.2 08134 26.9 42.6 28.7 9.2 08135 26.4 43.6 28.7 9.2 08136 27.1 42.2 27.0 0.0 08137 25.5 43.1 30.8 2.3 08139 23.0 44.6 29.0 2.8 08140 24.0 36.7 28.6 1.2 08141 24.0 36.7 28.6 1.2 08142 16.1 39.0 25.5 13.3 08144 13.5 37.7 27.8 6.3 08144 13.5 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08147 25.7 33.7 25.9 2.1 08148 <td>08120</td> <td>25.3</td> <td>43.2</td> <td>25.8</td> <td>0.4</td> <td></td>	08120	25.3	43.2	25.8	0.4	
08122 27.0 44.0 25.3 3.7 08123 27.3 45.8 26.9 7.0 08124 26.3 40.3 27.0 0.1 08125 24.3 42.1 26.0 1.2 08126 23.3 42.6 27.5 0.0 08127 25.0 42.7 25.5 2.1 08128 26.9 43.0 26.2 0.2 08130 26.9 42.8 26.1 2.9 08131 27.1 43.1 27.8 1.3 08132 23.2 42.5 27.7 1.2 08133 26.9 41.6 28.1 1.3 08134 26.9 42.6 26.0 0.0 08135 26.4 43.6 28.7 9.2 08136 27.1 42.2 27.0 0.0 08137 25.5 43.1 27.0 0.0 08138 27.8 44.3 29.0 2.8 08140 24.0 36.7 28.6 1.2 08141 21.2 34.1 24.1 1.1 08142 16.1 39.0 25.5 13.3 08144 13.5 37.4 25.1 7.0 08144 13.5 37.4 25.1 7.0 08144 13.5 37.4 25.9 2.1 08145 10.7 37.2 25.6 14.2 08146 28.0 43.2 27.4 0.0 08145 <td>08121</td> <td>24.9</td> <td>43.6</td> <td>26.4</td> <td>0.0</td> <td></td>	08121	24.9	43.6	26.4	0.0	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	08122	27.0	44.0	25.3	3.7	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	08123	27.3	45.8	26.9	7.0	
08125 24.3 42.1 26.0 1.2 08126 23.3 42.6 27.5 0.0 08127 25.0 42.7 25.5 2.1 08128 26.9 43.0 26.6 1.9 08129 26.2 43.0 26.6 2.9 08130 26.9 42.8 26.1 2.9 08131 27.1 43.1 27.8 1.3 08132 23.2 42.5 27.7 1.2 08133 26.9 41.6 28.1 1.3 08134 26.9 42.6 26.0 0.0 08135 26.4 43.6 28.7 9.2 08136 27.1 42.2 27.0 0.0 08137 25.5 43.1 27.0 0.0 08138 25.8 44.3 30.8 2.3 08139 23.0 44.6 29.0 2.8 08141 21.2 34.1 24.1 1.1 08142 16.1 39.0 25.5 13.3 08141 21.2 34.1 24.1 1.1 08142 16.1 39.0 25.6 14.2 08144 15.9 37.7 27.8 6.3 08144 15.9 37.7 27.8 6.3 08144 25.7 33.7 25.6 14.2 08145 10.7 37.2 25.6 14.2 08146 18.8 31.9 25.9 2.1 08147 </td <td>08124</td> <td>26.3</td> <td>40.3</td> <td>27.0</td> <td>0.1</td> <td></td>	08124	26.3	40.3	27.0	0.1	
08126 23.3 42.6 27.5 0.0 08127 25.0 42.7 25.5 2.1 08128 26.2 43.0 26.2 0.2 08130 26.9 42.8 26.1 2.9 08131 27.1 43.1 27.8 1.3 08132 23.2 42.5 27.7 1.2 08133 26.9 41.6 28.11 1.3 08133 26.9 42.6 26.0 0.0 08135 26.4 43.6 28.7 9.2 08136 27.1 42.2 27.0 0.0 08135 26.4 43.6 29.0 2.8 08137 25.5 43.1 27.0 0.0 08138 25.8 44.3 30.8 2.3 08140 24.0 36.7 28.6 1.2 08140 24.0 36.7 28.6 1.2 08141 21.2 34.1 24.1 1.1 08142 16.1 39.0 25.5 13.3 08143 15.9 37.7 27.8 6.3 08144 13.5 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08146 18.8 31.9 25.2 0.2 08147 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 27.4 0.0 08151 <td>08125</td> <td>24.3</td> <td>42.1</td> <td>26.0</td> <td>1.2</td> <td></td>	08125	24.3	42.1	26.0	1.2	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	08126	23.3	42.6	27.5	0.0	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	08127	25.0	42.7	25.5	2.1	
08129 26.2 43.0 26.2 0.2 08130 26.9 42.8 26.1 2.9 08131 27.1 43.1 27.8 1.3 08132 23.2 42.5 27.7 1.2 08133 26.9 42.6 26.0 0.0 08135 26.4 43.6 28.7 9.2 08136 27.1 42.2 27.0 0.0 08137 25.5 43.1 27.0 0.0 08138 25.8 44.3 30.8 2.3 08140 24.0 36.7 28.6 1.2 08141 21.2 34.1 24.1 1.1 08142 16.1 39.0 25.5 13.3 08143 15.9 37.7 27.8 6.3 08144 13.5 37.4 25.9 2.1 08144 13.5 37.4 25.9 0.2 08144 25.7 33.7 25.2 0.2 08144 25.7 33.7 25.2 0.2	08128	26.9	43.0	26.6	1.9	
08130 26.9 42.8 26.1 2.9 08131 27.1 43.1 27.8 1.3 08132 23.2 42.5 27.7 1.2 08133 26.9 41.6 28.1 1.3 08134 26.9 42.6 26.0 0.0 08135 26.4 43.6 28.7 9.2 08136 27.1 42.2 27.0 0.0 08137 25.5 43.1 27.0 0.0 08138 25.8 44.3 30.8 2.3 08139 23.0 44.6 29.0 2.8 08140 24.0 36.7 28.6 1.2 08141 21.2 34.1 24.1 1.1 08142 16.1 39.0 25.5 13.3 08143 15.9 37.7 27.8 6.3 08144 13.5 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08146 18.8 31.9 25.9 2.1 08147 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08150 28.0 43.2 27.4 0.6 08151 28.0 43.8 27.3 0.9 08152 27.7 42.2 27.9 0.1 08153 26.6 34.4 26.4 9.8 08154 <td>08129</td> <td>26.2</td> <td>43.0</td> <td>26.2</td> <td>0.2</td> <td></td>	08129	26.2	43.0	26.2	0.2	
08131 27.1 43.1 27.8 1.3 08132 23.2 42.5 27.7 1.2 08133 26.9 41.6 28.1 1.3 08134 26.9 42.6 26.0 0.0 08135 26.4 43.6 28.7 9.2 08136 27.1 42.2 27.0 0.0 08137 25.5 43.1 27.0 0.0 08138 25.8 44.3 30.8 2.3 08140 24.0 36.7 28.6 1.2 08141 21.2 34.1 24.1 1.1 08142 16.1 39.0 25.5 13.3 08143 15.9 37.7 27.8 6.3 08144 13.5 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08146 18.8 31.9 25.9 2.1 08147 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08150 28.0 43.2 27.4 0.6 08151 28.0 43.8 27.3 0.9 08152 27.7 42.2 27.9 0.1 08153 26.6 34.4 26.4 9.8 08154 22.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 <td>08130</td> <td>26.9</td> <td>42.8</td> <td>26.1</td> <td>2.9</td> <td></td>	08130	26.9	42.8	26.1	2.9	
08132 23.2 42.5 27.7 1.2 08133 26.9 41.6 28.1 1.3 08134 26.9 42.6 26.0 0.0 08135 26.4 43.6 28.7 9.2 08136 27.1 42.2 27.0 0.0 08137 25.5 43.1 27.0 0.0 08138 25.8 44.3 30.8 2.3 08139 23.0 44.6 29.0 2.8 08140 24.0 36.7 28.6 1.2 08141 21.2 34.1 24.1 1.1 08142 16.1 39.0 25.5 13.3 08143 15.9 37.7 27.8 6.3 08144 13.5 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08146 18.8 31.9 25.9 2.1 08147 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08151 28.0 43.8 27.3 0.9 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.6 08154 26.6 34.4 26.9 2.1 08155 <td>08131</td> <td>27.1</td> <td>43.1</td> <td>27.8</td> <td>1.3</td> <td></td>	08131	27.1	43.1	27.8	1.3	
08133 26.9 41.6 28.1 1.3 08134 26.9 42.6 26.0 0.0 08135 26.4 43.6 28.7 9.2 08136 27.1 42.2 27.0 0.0 08137 25.5 43.1 27.0 0.0 08138 25.8 44.3 30.8 2.3 08140 24.0 36.7 28.6 1.2 08141 21.2 34.1 24.1 1.1 08142 16.1 39.0 25.5 13.3 08143 15.9 37.7 27.8 6.3 08144 13.5 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08144 13.5 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08144 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08148 24.3 41.3 26.3 0.2 08148 24.3 41.3 26.3 0.2 08150 28.0 43.2 27.4 0.0 08151 28.0 43.8 27.3 0.9 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08155 <td>08132</td> <td>23.2</td> <td>42.5</td> <td>27.7</td> <td>1.2</td> <td></td>	08132	23.2	42.5	27.7	1.2	
08134 26.9 42.6 26.0 0.0 08135 26.4 43.6 28.7 9.2 08136 27.1 42.2 27.0 0.0 08137 25.5 43.1 27.0 0.0 08138 25.8 44.3 30.8 2.3 08139 23.0 44.6 29.0 2.8 08140 24.0 36.7 28.6 1.2 08141 21.2 34.1 24.1 1.1 08142 16.1 39.0 25.5 13.3 08143 15.9 37.7 27.8 6.3 08144 13.5 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08144 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08148 24.3 41.3 26.3 0.2 08148 24.3 41.3 26.3 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08150 28.0 43.2 27.4 0.0 08151 28.0 43.2 27.4 0.6 08152 27.7 42.2 27.9 0.1 08153 26.8 37.1 27.6 4.7 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.6 08155 <td>08133</td> <td>26.9</td> <td>41.6</td> <td>28.1</td> <td>1.3</td> <td></td>	08133	26.9	41.6	28.1	1.3	
08135 26.4 43.6 28.7 9.2 08136 27.1 42.2 27.0 0.0 08137 25.5 43.1 27.0 0.0 08138 25.8 44.3 30.8 2.3 08139 23.0 44.6 29.0 2.8 08140 24.0 36.7 28.6 1.2 08141 21.2 34.1 24.1 1.1 08142 16.1 39.0 25.5 13.3 08143 15.9 37.7 27.8 6.3 08144 13.5 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08146 18.8 31.9 25.9 2.1 08147 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08150 28.0 43.2 27.4 0.9 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 26.9 2.1 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08161	08134	26.9	42.6	26.0	0.0	
08136 27.1 42.2 27.0 0.0 08137 25.5 43.1 27.0 0.0 08138 25.8 44.3 30.8 2.3 08139 23.0 44.6 29.0 2.8 08140 24.0 36.7 28.6 1.2 08141 21.2 34.1 24.1 1.1 08142 16.1 39.0 25.5 13.3 08143 15.9 37.7 27.8 6.3 08144 13.5 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08146 18.8 31.9 25.9 2.1 08147 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08151 28.0 43.8 27.3 0.9 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08158 18.9 36.2 26.9 2.1 08160 21.5 40.6 27.7 4.7 08163	08135	26.4	43.6	28.7	9.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08136	27.1	42.2	27.0	0.0	
08138 25.8 44.3 30.8 2.3 08139 23.0 44.6 29.0 2.8 08140 24.0 36.7 28.6 1.2 08141 21.2 34.1 24.1 1.1 08142 16.1 39.0 25.5 13.3 08143 15.9 37.7 27.8 6.3 08145 10.7 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08146 18.8 31.9 25.9 2.1 08147 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08150 28.0 43.2 27.4 0.0 08151 28.0 43.8 27.3 0.9 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.6 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08163 19.7 41.2 27.6 13.9 08164 <td>08137</td> <td>25.5</td> <td>43.1</td> <td>27.0</td> <td>0.0</td> <td></td>	08137	25.5	43.1	27.0	0.0	
08139 23.0 44.6 29.0 2.8 08140 24.0 36.7 28.6 1.2 08141 21.2 34.1 24.1 1.1 08142 16.1 39.0 25.5 13.3 08143 15.9 37.7 27.8 6.3 08144 13.5 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08146 18.8 31.9 25.9 2.1 08147 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08150 28.0 43.2 27.4 0.0 08151 28.0 43.2 27.4 0.0 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 <td>08138</td> <td>25.8</td> <td>44.3</td> <td>30.8</td> <td>2.3</td> <td></td>	08138	25.8	44.3	30.8	2.3	
08140 24.0 36.7 28.6 1.2 08141 21.2 34.1 24.1 1.1 08142 16.1 39.0 25.5 13.3 08143 15.9 37.7 27.8 6.3 08144 13.5 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08146 18.8 31.9 25.9 2.1 08147 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08150 28.0 43.2 27.4 0.0 08151 28.0 43.2 27.9 0.1 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08163 <td>08139</td> <td>23.0</td> <td>44.6</td> <td>29.0</td> <td>2.8</td> <td></td>	08139	23.0	44.6	29.0	2.8	
08141 21.2 34.1 24.1 1.1 08142 16.1 39.0 25.5 13.3 08143 15.9 37.7 27.8 6.3 08144 13.5 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08146 18.8 31.9 25.9 2.1 08147 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08150 28.0 43.2 27.4 0.0 08151 28.0 43.8 27.3 0.9 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.5 28.2 0.7 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 <td>08140</td> <td>24.0</td> <td>36.7</td> <td>28.6</td> <td>1.2</td> <td></td>	08140	24.0	36.7	28.6	1.2	
08142 16.1 39.0 25.5 13.3 08143 15.9 37.7 27.8 6.3 08144 13.5 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08146 18.8 31.9 25.9 2.1 08147 25.7 33.7 25.2 0.2 08147 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08150 28.0 43.2 27.4 0.0 08151 28.0 43.8 27.3 0.9 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.2 26.9 2.1 08158 18.9 36.2 26.9 2.1 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 <td>08141</td> <td>21.2</td> <td>34.1</td> <td>24.1</td> <td>1.1</td> <td></td>	08141	21.2	34.1	24.1	1.1	
08143 15.9 37.7 27.8 6.3 08144 13.5 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08146 18.8 31.9 25.9 2.1 08147 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08150 28.0 43.2 27.4 0.0 08151 28.0 43.8 27.3 0.9 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.5 18.5 08166 <td>08142</td> <td>16.1</td> <td>39.0</td> <td>25.5</td> <td>13.3</td> <td></td>	08142	16.1	39.0	25.5	13.3	
08114 13.5 37.4 25.1 7.0 08145 10.7 37.2 25.6 14.2 08146 18.8 31.9 25.9 2.1 08147 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08151 28.0 43.2 27.4 0.0 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08168 24.6 39.1 26.0 1.3 08169 <td>08143</td> <td>15 9</td> <td>37 7</td> <td>27.8</td> <td>£3</td> <td></td>	08143	15 9	37 7	27.8	£3	
08145 10.7 37.2 25.6 14.2 08146 18.8 31.9 25.9 2.1 08147 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08150 28.0 43.2 27.4 0.0 08151 28.0 43.8 27.3 0.9 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08164 21.9 41.5 28.2 0.7 08166 10.6 35.7 26.3 55.9 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08169 <td>08144</td> <td>13.5</td> <td>37.4</td> <td>25.1</td> <td>7.0</td> <td></td>	08144	13.5	37.4	25.1	7.0	
03113 10.1 25.2 2.1 08146 18.8 31.9 25.9 2.1 08147 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08150 28.0 43.2 27.4 0.0 08151 28.0 43.2 27.7 0.1 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08166 10.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08169 13.2 <td>08145</td> <td>10 7</td> <td>37 2</td> <td>25.6</td> <td>14 2</td> <td></td>	08145	10 7	37 2	25.6	14 2	
08147 25.7 33.7 25.2 0.2 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08150 28.0 43.2 27.4 0.0 08151 28.0 43.8 27.3 0.9 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08166 10.6 39.1 26.0 1.3 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08169 13.2 34.2 26.5 18.5 08169 <td>08146</td> <td>18 8</td> <td>31 9</td> <td>25.9</td> <td>2 1</td> <td></td>	08146	18 8	31 9	25.9	2 1	
03111 1311 2611 012 08148 24.3 41.3 26.3 0.2 08149 27.6 42.8 26.2 0.0 08150 28.0 43.2 27.4 0.0 08151 28.0 43.8 27.3 0.9 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08166 10.6 39.1 26.0 1.3 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08169 13.2 34.2 26.9 5.3 08169 13.2 <td>08147</td> <td>25 7</td> <td>33 7</td> <td>25.2</td> <td>0 2</td> <td></td>	08147	25 7	33 7	25.2	0 2	
08149 27.6 42.8 26.2 0.0 08150 28.0 43.2 27.4 0.0 08151 28.0 43.8 27.3 0.9 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08166 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08169 13.2 34.2 26.5 18.5 08177 15.6 37.9 26.5 18.5	08148	24 3	41 3	26.3	0.2	
03115 28.0 43.2 27.4 0.0 08151 28.0 43.8 27.3 0.9 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08169 13.2 34.2 26.5 18.5	08149	27.6	42 8	26.2	0 0	
00150 10.0 13.2 27.1 0.0 08151 28.0 43.8 27.3 0.9 08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08169 13.2 34.2 26.9 5.3 08169 13.2 34.2 26.5 18.5	08150	28.0	43 2	20.2	0.0	
08152 27.7 42.2 27.9 0.1 08153 26.8 40.4 27.8 0.5 08154 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08170 15.6 37.9 26.5 18.5	08151	28.0	43.8	27.3	0.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08152	20.0	42 2	27.9	0 1	
08155 26.6 34.4 26.4 9.8 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08165 15.7 33.5 28.3 36.0 08165 15.7 25.2 3.5 9 08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3	08153	26.8	40 4	27.9	0 5	
08154 20.0 34.4 20.4 5.0 08155 26.2 41.7 25.7 0.0 08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3	08154	26.6	34 4	26.4	9.9	
08156 9.8 37.1 27.6 4.7 08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08170 15.6 37.9 26.5 18.5	08155	26.0	41 7	25.7	0 0	
08157 23.4 36.4 27.3 0.8 08158 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08169 13.2 34.2 26.5 18.5 08170 15.6 37.9 26.5 18.5	08156	98	37 1	27.6	4 7	
08157 18.9 36.2 26.9 2.1 08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08169 13.2 34.2 26.5 18.5 08170 15.6 37.9 26.5 18.5	08157	23 4	36 4	27.3	0.8	
08159 19.0 38.0 27.4 3.9 08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08169 13.2 34.2 26.9 5.3 08170 15.6 37.9 26.5 18.5	08158	18 9	36.2	26.9	2 1	
08160 21.5 40.6 27.7 4.7 08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08170 15.6 37.9 26.5 18.5	08159	19 0	38 0	20.9	39	
08161 22.0 34.9 28.7 3.0 08162 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08170 15.6 37.9 26.5 18.5	08160	21 5	40 6	27.1	4 7	
08161 20.4 39.7 26.8 5.1 08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08170 15.6 37.9 26.5 18.5	08161	22.0	34 9	28.7	3 0	
08163 19.7 41.2 27.6 13.9 08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08170 15.6 37.9 26.5 18.5	08162	20.4	39.7	26.8	5.1	
08164 21.9 41.5 28.2 0.7 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08170 15.6 37.9 26.5 18.5	08163	19 7	41 2	27.6	13.9	
08161 11.3 20.2 0.1 08165 15.7 33.5 28.3 36.0 08166 10.6 35.7 26.3 55.9 08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08170 15.6 37.9 26.5 18.5	08164	21 9	41 5	28.2	0 7	
08166 10.6 35.7 26.3 55.9 08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08170 15.6 37.9 26.5 18.5	08165	15 7	33 5	28.3	36 0	
08167 10.8 37.2 25.2 3.5 08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08170 15.6 37.9 26.5 18.5	08166	10.6	35.7	26.3	55.9	
08168 24.6 39.1 26.0 1.3 08169 13.2 34.2 26.9 5.3 08170 15.6 37.9 26.5 18.5	08167	10.8	37.2	25.2	3.5	
08169 13.2 34.2 26.9 5.3 08170 15.6 37.9 26.5 18.5	08168	24 6	39 1	26 0	1.3	
08170 15.6 37.9 26.5 18.5 08171 11.2 22.0 25.7 0.0	08169	13 2	34 2	26.9	±•⊃ 5.3	
	08170	15.6	37.9	26.5	18.5	
	08171	11 3	37 G	25.5	0 0	
08172 14.8 37.8 25.3 0.0	08172	14.8	37.8	25.3	0.0	

@DATE	SRAD	TMAX	TMIN	RAIN	
08173	19.7	35.3	25.6	0.5	
08174	16.7	39.3	27.1	1.3	
08175	21.5	37.2	26.4	29.0	
08176	22.0	37.6	27.3	20.1	
08177	22.0	33.3	27.2	2.8	
08178	17.4	34.1	27.2	27.3	
08179	14.5	31.2	26.6	5.5	
08180	11.0	30.8	25.4	30.1	
08181	7.9	30.5	24.2	13.8	
08182	17.0	34.5	23.8	5.8	
08183	15.3	33.8	24.6	10.0	
08184	16.6	33.4	24.2	0.3	
08185	14.7	35.3	24.5	7.3	
08186	17.3	33.3	25.1	10.9	
08187	19.7	34.9	25.7	6.1	
08188	16.8	34 9	25.2	0.6	
08189	23 9	34.2	25.2	0.0	
08190	23.2	38 1	26.4	0.9	
08191	24 5	37.8	25.9	4 6	
08192	21.0	37.3	26.6	1 6	
08193	14 0	35 6	25.8	79	
08194	17 4	35.0	24.8	21 8	
08195	ци. В Л	31 2	24.0	196	
08195	15 7	31 1	24.9	22 6	
08190	12.7	30 1	24.0	22.0	
08197	13 6	34 4	23.9	16.8	
08190	17 1	32 0	25.9	13.6	
08200	9 0	33 9	23.1	24.8	
08200	13 6	29.7	24.9	24.0	
08202	13.0	29.7	24.4	20.1	
08202	12.5	30 3	24.4	2.4	
08203	17 3	30.3	20.0	J.Z 1.4 - 2	
08204	10.2	30 5	24.5	14.2	
08205	11 0	21 5	24.7	22.9	
08200	10 /	32.0	24.2	6.2	
00207	19.4	32.2	24.0	1 0	
00200	10.U 21 0	32.0	24.0	1.0	
00209	21.0	33.Z 35.0	24.7	2.1	
00210	23.0	33.0	23.0	2.0	
00211	19.7	32.2	24.0	0.9	
00212	17.2	32.1	24.5	0.1	
00213	1/.J	32.2	25.4	0.4	
08214	10.1	31.8	23.3	4.4	
00215	21.3 16 0	JU.0 21 0	20.3 25 1		
00210	10.0	J⊥.∠ 20 4	23.4	4.∠ 1.4	
UOZI/ 00210	20.4 10 0	3∠.4 22.2	24.6	1.4 0.6	
UOZIO	17 2	J∠.J	24.0	U.0 10.0	
00219	11.3	30.8	24.3	12.8	
08220	$\perp \perp \cdot \perp$	∠४.⊥	∠4.8	JZ.8	

@ INSI MUN7	LAT 27 417	LONG ELEV 84 133 154	TAV AM	P REFHT WNDHT 3 -99 0 -99 0	
ODATE	SRAD	TMAX	<u>TMTN</u>	RATN	
07097	26.1	27.7	15.6	1.9	
07098	26.2	26.1	16.0	0.7	
07099	24.2	22.6	17.2	0.4	
07100	26.8	20.4	15.9	0.1	
07101	25.0	20.1	15.6	15 6	
07102	24 0	19 5	14 2		
07103	22.6	19.5	13.9	1.2	
07104	24.7	22.8	14.8	0.0	
07105	27.3	21.8	15.9	2.1	
07106	22.0	21.1	16.9	0.6	
07107	25.2	22.5	17.6	0.0	
07108	19.5	22.0	16.9	0.0	
07109	23.9	21.5	17.2	0.1	
07110	27.8	22.6	16.9	0.0	
07111	26.6	22.7	17.9	0.0	
07112	28.8	22.3	18.0	0.0	
07113	29.4	22.1	17.7	0.0	
07114	26.0	21.8	17.6	0.0	
07115	28.4	21.7	17.1	0.0	
07116	26.5	21.3	16.2	0.0	
07117	27.5	22.8	16.4	0.0	
07118	27.7	22.9	15.3	0.0	
07119	24.6	22.2	15.4	3.1	
07120	16.0	21.6	18.2	0.0	
07121	29.6	21.3	17.1	0.0	
07122	29.3	22.9	17.1	5.8	
07123	27.9	23.2	16.4	1.3	
07124	25.9	23.1	18.2	1.1	
07125	26.7	24.1	17.6	0.6	
07126	17.6	24.2	17.7	4.3	
07127	8.9	22.2	17.9	0.0	
07128	22.1	23.8	18.1	0.0	
07129	19.2	22.6	18.6	0.0	
07130	25.6	22.4	18.4	0.1	
07131	24.8	22.8	18.2	17.8	
07132	28.4	22.2	18.2	0.0	
07133	30.6	22.9	16.9	0.0	
07134	20.2	22.1	10.9	U.U E C	
07135	13.6	23.0	10 0	2.0 2.5	
07130	10.0	23.2	10.0	2.5	
07139	19 6	22.7	10.4	0.3	
07130	20.0	22.0	19.0	0.9	
07140	20.0	24.7	18 6	25	
07140	20.9	23.3	20 1	2.5	
07142	20.5	25.7	18 9	0.0	
07143	20.0 30 3	23.3	17 0	0.0	
07144	30.3	27.1	17.2	0.0	
07145	31.3	27.4	16.3	0.0	
07146	26.3	27.0	17.5	0.0	
07147	26.4	26.1	17.1	7.4	
07148	30.6	26.4	18.2	0.0	
07149	25.9	28.5	15.5	0.0	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	@DATE	SRAD	TMAX	TMIN	RAIN	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07150	30.6	28.0	16.6	0.0	
07152 30.9 30.9 18.7 0.0 07153 30.9 29.6 20.2 0.0 07154 23.0 24.9 21.0 19.0 07155 23.9 24.2 19.8 0.9 07157 21.8 25.4 19.9 0.6 07159 16.1 25.0 20.8 27.5 07161 5.6 22.0 19.6 10.0 07162 13.1 25.4 18.9 1.4 07163 22.5 26.3 19.9 8.8 07164 9.5 23.7 21.7 13.3 07165 9.8 22.7 20.8 4.4 07166 3.9 22.6 20.6 15.5 07167 19.3 24.0 19.7 2.8 07168 24.8 23.6 20.3 1.2 07172 24.3 20.5 6.7 20.7 07171 23.3 23.2 20.0 0.8 07173 20.0 24.2 20.3 5.3	07151	31.6	29.2	17.9	0.0	
0715330.929.620.20.00715423.024.219.80.90715523.924.219.80.90715618.523.220.05.60715818.824.720.50.00715916.125.020.80.1071607.823.920.827.5071615.622.019.610.00716213.125.418.91.40716322.526.319.98.8071649.822.720.84.4071659.822.720.84.4071663.922.620.50.40716719.324.019.72.80716824.823.620.31.20716723.323.220.00.00717024.924.019.76.70717123.323.220.00.00717224.324.217.30.00717322.024.220.35.30717415.423.920.56.30717520.823.920.22.70718021.626.120.67.10718118.823.620.67.10718220.925.219.911.0071849.425.120.837.20718522.224.921.538.6071849.425.1 </td <td>07152</td> <td>30.9</td> <td>30.9</td> <td>18.7</td> <td>0.0</td> <td></td>	07152	30.9	30.9	18.7	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07153	30.9	29.6	20.2	0.0	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	07154	23.0	24.9	21.0	19.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07155	23.9	24.2	19.8	0.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07156	18.5	23.2	20.0	5.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07157	21.8	25.4	19.9	0.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07158	18.8	24.7	20.5	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07159	16.1	25.0	20.8	0.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07160	7.8	23.9	20.8	27.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07161	5.6	22.0	19.6	10.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07162	13.1	25.4	18.9	1.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07164	22.5	20.3	19.9	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07165	9.5	23.1	21.7	13.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07165	9.0 3 9	22.1	20.0	4.4 15 5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07167	19 3	22.0	19 7	2 8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07168	24 8	24.0	20 3	2.0	
07170 24.9 24.0 19.7 6.7 07171 23.3 23.2 20.0 0.0 07172 24.3 24.2 17.3 0.0 07173 22.0 24.2 20.3 5.3 07174 23.1 24.3 20.3 0.8 07175 20.8 23.9 20.2 2.7 07176 17.1 23.9 20.6 23.3 07178 18.8 23.6 20.6 23.3 07179 27.7 24.5 20.6 7.1 07180 21.6 26.1 20.6 1.7 07181 20.4 25.3 18.8 2.9 07182 20.9 25.2 19.9 11.0 07183 18.0 24.1 21.8 4.8 07184 9.4 25.1 20.8 37.2 07185 22.2 24.9 21.2 20.5 07186 21.0 24.8 21.5 38.6 07190 20.7 24.9 21.0 1.6 <t< td=""><td>07169</td><td>25.2</td><td>23.0</td><td>20.5</td><td>$1 \cdot 2$ 0 4</td><td></td></t<>	07169	25.2	23.0	20.5	$1 \cdot 2$ 0 4	
07171 23.3 23.2 20.0 0.0 07172 24.3 24.2 17.3 0.0 07173 22.0 24.2 20.3 5.3 07174 23.1 24.3 20.3 0.8 07175 20.8 23.9 20.2 2.7 07176 17.1 23.9 20.6 23.3 07178 18.8 23.6 20.6 26.8 07179 27.7 24.5 20.6 7.1 07180 21.6 26.1 20.6 1.7 07181 20.4 25.3 18.8 2.9 07182 20.9 25.2 19.9 11.0 07183 18.0 24.1 21.8 4.8 07184 9.4 25.1 20.5 37.2 07185 22.2 24.9 21.2 20.5 07186 21.0 24.8 21.5 38.6 07187 19.2 25.6 21.8 8.8 07184 24.4 21.4 0.0 07185 12.2 25.6 21.8 38.8 07186 21.0 24.5 22.3 12.1 07185 19.9 25.2 21.7 5.5 07190 20.7 24.9 21.5 9.0 07192 8.1 24.6 21.8 38.8 07193 17.6 25.2 21.7 5.5 07194 13.9 24.5 22.3 12.1 07195 $10.$	07170	24.9	24.0	19.7	6.7	
07172 24.3 24.2 17.3 0.0 07173 22.0 24.2 20.3 5.3 07174 23.1 24.3 20.3 0.8 07175 20.8 23.9 20.2 2.7 07176 17.1 23.9 20.5 6.3 07177 15.4 23.3 20.6 23.3 07178 18.8 23.6 20.6 7.1 07180 21.6 26.1 20.6 1.7 07181 20.4 25.3 18.8 2.9 07182 20.9 25.2 19.9 11.0 07183 18.0 24.1 21.8 4.8 07184 9.4 25.1 20.8 37.2 07185 22.2 24.9 21.2 20.5 07186 21.0 24.8 21.5 38.6 07184 9.4 25.6 21.8 8.8 07185 22.2 24.9 21.2 20.5 07186 20.9 27.1 20.3 0.1 07188 20.9 27.1 20.3 0.1 07192 8.1 24.6 21.8 38.8 07192 8.1 24.6 21.8 38.8 07193 17.6 25.2 21.7 5.5 07194 13.9 24.5 22.3 12.1 07195 19.9 25.3 21.6 5.1 07194 13.9 24.5 22.3 12.1 07195	07171	23.3	23.2	20.0	0.0	
07173 22.0 24.2 20.3 5.3 07174 23.1 24.3 20.3 0.8 07175 20.8 23.9 20.2 2.7 07176 17.1 23.9 20.5 6.3 07177 15.4 23.3 20.6 23.3 07178 18.8 23.6 20.6 26.8 07179 27.7 24.5 20.6 7.1 07180 21.6 26.1 20.6 1.7 07181 20.4 25.3 18.8 2.9 07182 20.9 25.2 19.9 11.0 07183 18.0 24.1 21.8 4.8 07184 9.4 25.1 20.8 37.2 07185 22.2 24.9 21.2 20.5 07186 21.0 24.8 21.5 38.6 07184 9.4 25.1 20.3 0.1 07185 22.2 24.9 21.2 20.5 07186 21.0 24.8 21.5 38.6 07190 20.7 24.9 21.0 1.6 07190 20.7 24.9 21.0 1.6 07192 8.1 24.6 21.8 38.8 07193 17.6 25.2 21.7 5.5 07194 13.9 24.5 22.3 12.1 07195 19.9 25.3 21.6 5.1 07196 10.5 25.0 21.5 16.5 0719	07172	24.3	24.2	17.3	0.0	
07174 23.1 24.3 20.3 0.8 07175 20.8 23.9 20.2 2.7 07176 17.1 23.9 20.5 6.3 07177 15.4 23.3 20.6 23.3 07178 18.8 23.6 20.6 26.8 07179 27.7 24.5 20.6 1.7 07180 21.6 26.1 20.6 1.7 07181 20.4 25.3 18.8 2.9 07182 20.9 25.2 19.9 11.0 07183 18.0 24.1 21.8 4.8 07184 9.4 25.1 20.8 37.2 07185 22.2 24.9 21.2 20.5 07186 21.0 24.8 21.5 38.6 07187 19.2 25.6 21.8 8.8 07188 20.9 27.1 20.3 0.1 07189 19.4 24.4 21.4 0.0 07190 20.7 24.9 21.5 9.0 07191 18.4 24.9 21.5 9.0 07192 8.1 24.5 22.3 12.1 07195 19.9 25.3 21.6 5.1 07194 13.9 24.5 22.3 12.1 07195 19.9 25.3 20.2 25.4 07194 13.9 24.5 22.3 12.1 07196 10.5 25.0 21.5 15.3 071	07173	22.0	24.2	20.3	5.3	
07175 20.8 23.9 20.2 2.7 07176 17.1 23.9 20.5 6.3 07177 15.4 23.3 20.6 23.3 07178 18.8 23.6 20.6 26.8 07179 27.7 24.5 20.6 7.1 07180 21.6 26.1 20.6 1.7 07181 20.4 25.3 18.8 2.9 07182 20.9 25.2 19.9 11.0 07183 18.0 24.1 21.8 4.8 07184 9.4 25.1 20.8 37.2 07185 22.2 24.9 21.2 20.5 07186 21.0 24.8 21.5 38.6 07187 19.2 25.6 21.8 8.8 07188 20.9 27.1 20.3 0.1 07189 19.4 24.4 21.4 0.0 07190 20.7 24.9 21.5 9.0 07192 8.1 24.6 21.8 38.8 07193 17.6 25.2 21.7 5.5 07194 13.9 24.5 22.3 12.1 07195 19.9 25.3 21.6 5.1 07194 13.9 24.5 22.3 12.1 07198 7.1 25.0 19.4 16.5 07199 14.5 25.3 20.2 25.4 07200 18.8 25.2 20.2 25.4 072	07174	23.1	24.3	20.3	0.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07175	20.8	23.9	20.2	2.7	
07177 15.4 23.3 20.6 23.3 07178 18.8 23.6 20.6 26.8 07179 27.7 24.5 20.6 7.1 07180 21.6 26.1 20.6 1.7 07181 20.4 25.3 18.8 2.9 07182 20.9 25.2 19.9 11.0 07183 18.0 24.1 21.8 4.8 07184 9.4 25.1 20.8 37.2 07185 22.2 24.9 21.2 20.5 07186 21.0 24.8 21.5 38.6 07187 19.2 25.6 21.8 8.8 07188 20.9 27.1 20.3 0.1 07188 20.9 27.1 20.3 0.1 07189 19.4 24.4 21.4 0.0 07190 20.7 24.9 21.5 9.0 07192 8.1 24.6 21.8 38.8 07193 17.6 25.2 21.7 5.5 07194 13.9 24.5 22.3 12.1 07195 19.9 25.3 21.6 5.1 07196 10.5 25.0 21.5 15.3 07197 12.9 26.1 17.6 14.9 07198 7.1 25.3 20.2 25.4 07201 12.7 24.7 22.1 16.8 07202 8.5 24.8 21.7 24.8 072	07176	17.1	23.9	20.5	6.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07177	15.4	23.3	20.6	23.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07178	18.8	23.6	20.6	26.8	
07180 21.6 26.1 20.6 1.7 07181 20.4 25.3 18.8 2.9 07182 20.9 25.2 19.9 11.0 07183 18.0 24.1 21.8 4.8 07184 9.4 25.1 20.8 37.2 07185 22.2 24.9 21.2 20.5 07186 21.0 24.8 21.5 38.6 07187 19.2 25.6 21.8 8.8 07188 20.9 27.1 20.3 0.1 07189 19.4 24.4 21.4 0.0 07190 20.7 24.9 21.5 9.0 07191 18.4 24.9 21.5 9.0 07192 8.1 24.6 21.8 38.8 07193 17.6 25.2 21.7 5.5 07194 13.9 24.5 22.3 12.1 07195 19.9 25.3 21.6 5.1 07196 10.5 25.0 21.5 15.3 07197 12.9 26.1 17.6 14.9 07198 7.1 25.3 20.2 1.2 07200 18.8 25.2 20.2 25.4 07201 12.7 24.7 22.1 16.8 07202 8.5 24.8 21.7 24.8 07203 7.7 23.5 20.8 40.7 07205 7.2 23.1 19.4 2.3 <td>07179</td> <td>27.7</td> <td>24.5</td> <td>20.6</td> <td>7.1</td> <td></td>	07179	27.7	24.5	20.6	7.1	
07181 20.4 25.3 18.8 2.9 07182 20.9 25.2 19.9 11.0 07183 18.0 24.1 21.8 4.8 07184 9.4 25.1 20.8 37.2 07185 22.2 24.9 21.2 20.5 07186 21.0 24.8 21.5 38.6 07187 19.2 25.6 21.8 8.8 07188 20.9 27.1 20.3 0.1 07189 19.4 24.4 21.4 0.0 07190 20.7 24.9 21.5 9.0 07191 18.4 24.9 21.5 9.0 07192 8.1 24.6 21.8 38.8 07193 17.6 25.2 21.7 5.5 07194 13.9 24.5 22.3 12.1 07195 19.9 25.3 21.6 5.1 07197 12.9 26.1 17.6 14.9 07198 7.1 25.0 19.4 16.5 07199 14.5 25.3 20.2 25.4 07200 18.8 25.2 20.2 25.4 07201 12.7 24.7 22.1 16.8 07202 8.5 24.8 21.7 24.8 07203 7.7 23.5 20.8 40.7 07204 10.7 24.6 20.5 0.6	07180	21.6	26.1	20.6	1.7	
07182 20.9 25.2 19.9 11.0 07183 18.0 24.1 21.8 4.8 07184 9.4 25.1 20.8 37.2 07185 22.2 24.9 21.2 20.5 07186 21.0 24.8 21.5 38.6 07187 19.2 25.6 21.8 8.8 07188 20.9 27.1 20.3 0.1 07189 19.4 24.4 21.4 0.0 07190 20.7 24.9 21.5 9.0 07191 18.4 24.9 21.5 9.0 07192 8.1 24.6 21.8 38.8 07193 17.6 25.2 21.7 5.5 07194 13.9 24.5 22.3 12.1 07195 19.9 25.3 21.6 5.1 07196 10.5 25.0 21.5 15.3 07197 12.9 26.1 17.6 14.9 07198 7.1 25.0 19.4 16.5 07199 14.5 25.3 20.2 1.2 07200 18.8 25.2 20.2 25.4 07201 12.7 24.7 22.1 16.8 07203 7.7 23.5 20.8 40.7 07204 10.7 24.6 20.5 0.6 07205 7.2 23.1 19.4 2.3	07181	20.4	25.3	18.8	2.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07182	20.9	25.2	19.9	11.0	
071849.425.120.837.20718522.224.921.220.50718621.024.821.538.60718719.225.621.88.80718820.927.120.30.10718919.424.421.40.00719020.724.921.59.00719118.424.921.59.0071928.124.621.838.80719317.625.221.75.50719413.924.522.312.10719519.925.321.65.10719610.525.021.515.30719712.926.117.614.9071987.125.019.416.50719914.525.320.21.20720018.825.220.225.40720112.724.722.116.8072028.524.821.724.8072037.723.520.840.70720410.724.620.50.6072057.223.119.42.3	07183	18.0	24.1	21.8	4.8	
07185 22.2 24.9 21.2 20.5 07186 21.0 24.8 21.5 38.6 07187 19.2 25.6 21.8 8.8 07188 20.9 27.1 20.3 0.1 07189 19.4 24.4 21.4 0.0 07190 20.7 24.9 21.5 9.0 07191 18.4 24.9 21.5 9.0 07192 8.1 24.6 21.8 38.8 07193 17.6 25.2 21.7 5.5 07194 13.9 24.5 22.3 12.1 07195 19.9 25.3 21.6 5.1 07196 10.5 25.0 21.5 15.3 07197 12.9 26.1 17.6 14.9 07198 7.1 25.0 19.4 16.5 07199 14.5 25.3 20.2 25.4 07200 18.8 25.2 20.2 25.4 07201 12.7 24.7 22.1 16.8 07202 8.5 24.8 21.7 24.8 07203 7.7 23.5 20.8 40.7 07204 10.7 24.6 20.5 0.6 07205 7.2 23.1 19.4 2.3	07184	9.4	25.1	20.8	37.2	
07186 21.0 24.8 21.5 38.6 07187 19.2 25.6 21.8 8.8 07188 20.9 27.1 20.3 0.1 07189 19.4 24.4 21.4 0.0 07190 20.7 24.9 21.0 1.6 07191 18.4 24.9 21.5 9.0 07192 8.1 24.6 21.8 38.8 07193 17.6 25.2 21.7 5.5 07194 13.9 24.5 22.3 12.1 07195 19.9 25.3 21.6 5.1 07196 10.5 25.0 21.5 15.3 07197 12.9 26.1 17.6 14.9 07198 7.1 25.0 19.4 16.5 07199 14.5 25.3 20.2 1.2 07200 18.8 25.2 20.2 25.4 07201 12.7 24.7 22.1 16.8 07202 8.5 24.8 21.7 24.8 07203 7.7 23.5 20.8 40.7 07204 10.7 24.6 20.5 0.6 07205 7.2 23.1 19.4 2.3	07185	22.2	24.9	21.2	20.5	
07187 19.2 25.6 21.8 8.8 07188 20.9 27.1 20.3 0.1 07189 19.4 24.4 21.4 0.0 07190 20.7 24.9 21.0 1.6 07191 18.4 24.9 21.5 9.0 07192 8.1 24.6 21.8 38.8 07193 17.6 25.2 21.7 5.5 07194 13.9 24.5 22.3 12.1 07195 19.9 25.3 21.6 5.1 07196 10.5 25.0 21.5 15.3 07197 12.9 26.1 17.6 14.9 07198 7.1 25.0 19.4 16.5 07199 14.5 25.3 20.2 1.2 07200 18.8 25.2 20.2 25.4 07201 12.7 24.7 22.1 16.8 07202 8.5 24.8 21.7 24.8 07203 7.7 23.5 20.8 40.7 07204 10.7 24.6 20.5 0.6 07205 7.2 23.1 19.4 2.3	07186	21.0	24.8	21.5	38.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07187	19.2	25.6	21.8	8.8	
07189 19.4 24.4 21.4 0.0 07190 20.7 24.9 21.0 1.6 07191 18.4 24.9 21.5 9.0 07192 8.1 24.6 21.8 38.8 07193 17.6 25.2 21.7 5.5 07194 13.9 24.5 22.3 12.1 07195 19.9 25.3 21.6 5.1 07196 10.5 25.0 21.5 15.3 07197 12.9 26.1 17.6 14.9 07198 7.1 25.0 19.4 16.5 07199 14.5 25.3 20.2 1.2 07200 18.8 25.2 20.2 25.4 07201 12.7 24.7 22.1 16.8 07202 8.5 24.8 21.7 24.8 07203 7.7 23.5 20.8 40.7 07204 10.7 24.6 20.5 0.6 07205 7.2 23.1 19.4 2.3	07188	20.9	27.1	20.3	0.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07189	19.4	24.4	21.4	0.0	
0719118.424.921.59.0071928.124.621.838.80719317.625.221.75.50719413.924.522.312.10719519.925.321.65.10719610.525.021.515.30719712.926.117.614.9071987.125.019.416.50719914.525.320.21.20720018.825.220.225.40720112.724.722.116.8072028.524.821.724.8072037.723.520.840.70720410.724.620.50.6072057.223.119.42.3	07190	20.7	24.9	21.0	1.6	
071928.124.621.838.80719317.625.221.75.50719413.924.522.312.10719519.925.321.65.10719610.525.021.515.30719712.926.117.614.9071987.125.019.416.50719914.525.320.21.20720018.825.220.225.40720112.724.722.116.8072028.524.821.724.8072037.723.520.840.70720410.724.620.50.6072057.223.119.42.3	07191	18.4	24.9	21.5	9.0	
0719317.623.221.75.30719413.924.522.312.10719519.925.321.65.10719610.525.021.515.30719712.926.117.614.9071987.125.019.416.50719914.525.320.21.20720018.825.220.225.40720112.724.722.116.8072028.524.821.724.8072037.723.520.840.70720410.724.620.50.6072057.223.119.42.3	07192	8.1 17.6	24.0	21.8	38.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07193	17.6	23.2 24 E	21.7		
0719319.923.321.03.10719610.525.021.515.30719712.926.117.614.9071987.125.019.416.50719914.525.320.21.20720018.825.220.225.40720112.724.722.116.8072028.524.821.724.8072037.723.520.840.70720410.724.620.50.6072057.223.119.42.3	07194	13.9	24.5	22.3	12.1 5 1	
0719010.323.021.313.30719712.926.117.614.9071987.125.019.416.50719914.525.320.21.20720018.825.220.225.40720112.724.722.116.8072028.524.821.724.8072037.723.520.840.70720410.724.620.50.6072057.223.119.42.3	07195	19.9	25.5	21.0	J.I 15 3	
07197 12.9 20.1 17.0 14.9 07198 7.1 25.0 19.4 16.5 07199 14.5 25.3 20.2 1.2 07200 18.8 25.2 20.2 25.4 07201 12.7 24.7 22.1 16.8 07202 8.5 24.8 21.7 24.8 07203 7.7 23.5 20.8 40.7 07204 10.7 24.6 20.5 0.6 07205 7.2 23.1 19.4 2.3	07190	12 9	25.0	21.5	11.9	
0719914.525.320.21.20720018.825.220.225.40720112.724.722.116.8072028.524.821.724.8072037.723.520.840.70720410.724.620.50.6072057.223.119.42.3	07198	-2.9 7 1	25 0	19 4	16 5	
0720018.825.220.225.40720112.724.722.116.8072028.524.821.724.8072037.723.520.840.70720410.724.620.50.6072057.223.119.42.3	07199	,. <u>.</u> 14 5	25.0	20 2	1.2	
0720112.724.722.116.8072028.524.821.724.8072037.723.520.840.70720410.724.620.50.6072057.223.119.42.3	07200	18.8	25.2	20.2	25.4	
072028.524.821.724.8072037.723.520.840.70720410.724.620.50.6072057.223.119.42.3	07201	12.7	24.7	22.1	16.8	
072037.723.520.840.70720410.724.620.50.6072057.223.119.42.3	07202	8.5	24.8	21.7	24.8	
0720410.724.620.50.6072057.223.119.42.3	07203	7.7	23.5	20.8	40.7	
07205 7.2 23.1 19.4 2.3	07204	10.7	24.6	20.5	0.6	
	07205	7.2	23.1	19.4	2.3	

0 DATE	SRAD	TMAX	TMIN	RAIN
07206	10.4	22.4	20.1	3.5
07207	6.6	23.3	21.1	13.7
07208	7.1	21.9	21.1	8.2
07209	8.3	22.8	20.3	0.0
07210	7.4	22.8	20.0	4.3
07211	7 6	23 6	21 1	7 1
07212	10 5	24 6	20.7	2 1
07213	11 5	24.0	20.7	0.8
07214	12 7	24.5	21.5	1 0
07215	21 0	23.0	20.9	1.0
07215	21.9	24.4	21.4	10 1
07210	24.2	24.7	20.9	
07217	23.2	26.0	21.5	0.8
07218	22.3	26.8	21.1	9.4
07219	20.3	26.5	20.6	0.1
07220	21.2	25.6	20.8	0.4
07221	21.1	25.7	20.9	4.9
07222	23.1	27.0	20.5	5.8
07223	21.2	26.4	21.7	18.3
07224	13.7	27.6	21.1	37.3
07225	13.1	25.6	20.8	6.9
07226	8.7	24.8	21.1	10.2
07227	15.5	25.2	21.5	19.0
07228	15.0	24.5	21.3	47.2
07229	7.5	25.5	20.8	21.1
07230	16.0	25.6	20.9	5.0
07231	14.0	25.2	18.9	2.7
07232	18.5	23.5	19.2	0.0
07233	23.7	25.6	17.5	0.0
07234	23.8	24.2	18.1	0.0
07235	18.6	25.1	19.4	13.9
07236	16 7	24 4	20 7	10 4
07237	22 6	25 1	19 5	0 2
07238	17 3	23.2	19.9	9.5
07230	20.8	24.0	20 3	5 1
07235	18 4	27.0	19 4	2 1
07240	10.4	22.9	10 0	$2 \cdot 1$
07241	10.0	23.1	19.9	12.U 20 E
07242	12.4	23.0	19.7	30.3
07243	0.0	23.2	19.7	9.2
07244	23.0	23./	20.1	23.5
0/245	17.0	24.4	19.5	12.0
0/246	1.0	∠4.0	20.2	10.2
07247	15.2	24.0	21.5	12.3
07248	12.0	22.6	19.6	51.3
07249	8.6	24.6	19.2	19.3
07250	18.4	23.7	19.0	7.0
07251	17.1	25.6	19.0	33.3
07252	19.0	24.8	20.8	28.6

*WEATHER	DATA : 2	2006			
@ INSI	LAT	LONG ELEV	TAV	AMP REFHT WNDHT	
MUN8	27.417	84.133 154	18.2	5.1 -99.0 -99.0	
@DATE	SRAD	TMAX	TMIN	RAIN	
06097	23.1	25.8	14.5	9.8	
06098	23.9	22.1	16.3	0.1	
06099	16.2	21.7	15.2	0.1	
06100	24.6	22.6	15.7	4.0	
06101	26.1	23.3	13.4	0.0	
06102	24.4	27.9	13.8	0.0	
06103	25.2	27.8	13.2	0.0	
06104	29.2	27.3	13.8	0.0	
06105	26.5	28.8	15.1	0.0	
06106	26.1	27.1	13.1	0.0	
06107	19.2	23.6	16.5	1/.6	
06108	8.1	18.4	15.0	3.4	
06109	19.5	17.5	13.9	7.0	
06110	24.9	17.9	13.1	0.0	
06111	22.6	19.4	13.3 15 0	0.0	
06112	18.3	19.7	15.3 15.1	5.0	
06113	22.4	19.4	13.1 14 1	1.9	
06114	21.3	20.8	14.1	1.3 0.1	
06115	26.7	20.1	14.8	U.L 1 1	
06110	22.2	20.4	14.2		
06110	24.1 27.2	22.9	16.3	0.0	
06110	27.2	22.9	16.7	0.0	
06120	29.1	24.3	17 3	0.0	
06120	29.4	22.9	17.5	2.4	
06122	27.6	23.0	16 2	6.6	
06123	28.7	22.8	16 3	1 2	
06123	26.8	22.0	16.0	1 5	
06125	28.5	26.0	17.3	0.0	
06126	22.1	25.5	18.4	1.5	
06127	22.7	23.3	17.2	5.2	
06128	16.6	23.3	17.7	0.0	
06129	21.3	22.3	18.6	0.2	
06130	5.4	21.2	18.5	9.6	
06131	26.1	22.8	17.5	0.9	
06132	14.1	22.8	18.4	1.0	
06133	21.2	21.0	17.9	0.0	
06134	29.4	23.6	16.1	1.7	
06135	22.4	22.0	17.4	0.0	
06136	23.5	24.7	17.3	0.0	
06137	25.4	25.8	18.7	0.0	
06138	15.0	23.4	19.0	9.6	
06139	20.2	22.0	18.7	0.0	
06140	20.9	23.5	16.1	0.0	
06141	11.7	24.3	19.7	0.0	
06142	20.6	26.3	19.6	0.2	
06143	18.7	27.9	19.8	4.3	
06144	17.7	26.2	20.0	1.3	
06145	21.1	25.9	20.8	1.6	
06146	19.0	26.7	21.3	22.1	
06147	19.6	23.9	21.0	18.5	
06148	17.2	24.2	20.8	10.4	
06149	18.9	23.0	20.0	9.0	

@DATE	SRAD	TMAX	TMIN	RAIN	
06150	21.9	25.4	20.4	1.8	
06151	23.1	26.4	21.2	0.0	
06152	16.1	24.6	20.6	10.9	
06153	6.9	24.3	18.1	15.9	
06154	4.3	23.5	20.0	14.3	
06155	7.5	22.0	19.7	25.4	
06156	18.3	24.0	18.6	16.0	
06157	3.7	24.0	20.3	33.2	
06158	5.5	22.8	20.3	10.6	
06159	14.4	22.9	20.8	14.2	
06160	20.1	22.9	21.0	10.7	
06161	14.1	23.2	20.3	16.4	
06162	21.7	25.3	20.4	0.0	
06163	24.2	27.5	19.3	0.1	
06164	22.1	26.5	17.7	0.0	
06165	23.8	25.6	18.1	0.0	
06166	25.3	24.6	17.0	0.2	
06167	23.1	25.7	17.4	1.2	
06168	20.8	23.2	20.0	1.5	
06169	23.2	25.0	19.1	0.0	
06170	23.7	24.4	19.3	0.0	
06171	17.9	24.7	19.0	6.2	
06172	26.0	24.2	19.6	0.0	
06173	22.6	24.9	19.4	0.0	
06174	20.0	24.9	20.1	4.9	
06175	.8	24.7	20.2	9.5	
06176	16.2	24.2	19.9	20.9	
06177	13.1 11 1	23.8	20.6	23.1	
06170	17 E	22.3	20.3	0.0	
0619	106	22.4	19.1	0.U 15 1	
06191	10.0	23.0	19.7	10.1	
06182	•4 21 5	24.4	20.9	0.8	
06183	19 7	25.2	20.0	9 9	
06184	19.7 23.4	26.0	22.0	0 1	
06185	197	26.6	21.0	4 6	
06186	19.6	20.0	20.5	1 9	
06187	17 4	23.3	21.5	7 3	
06188	99	25.0	19.7	36.0	
06189	5.0	25.8	21.6	18 5	
06190	10.2	25.9	22.6	9.0	
06191	13.5	25.1	21.8	11.3	
06192	12.9	24.9	21.3	18.7	
06193	10.6	22.3	21.1	13.6	
06194	8.7	25.0	20.5	5.8	
06195	14.1	25.7	20.7	13.2	
06196	15.0	24.1	21.5	10.3	
06197	19.8	24.7	21.6	2.1	
06198	20.7	25.1	21.5	9.2	
06199	18.1	25.2	21.5	9.0	
06200	13.7	24.8	20.0	16.5	
06201	17.6	24.9	21.5	3.0	
06202	19.6	25.5	0.8	4.2	
06203	16.7	24.0	18.6	2.2	
06204	15.7	23.3	20.1	0.0	
06205	10.8	22.1	19.7	0.1	

06206 6.5 22.9 19.3 17.1 06207 11.6 24.6 20.6 3.2 06209 16.3 22.4 19.8 12.3 06210 21.1 25.0 19.5 9.6 06211 20.7 25.7 19.3 4.9 06212 20.7 25.8 20.1 2.3 06214 20.1 25.6 20.5 13.3 06215 14.5 24.1 21.0 8.5 06216 20.0 24.1 19.6 7.3 06217 17.7 24.0 19.5 5.9 06218 16.2 22.9 19.2 1.9 06220 19.7 23.9 19.6 7.9 06221 21.2 25.6 18.6 1.0 06222 15.1 25.8 19.4 13.7 06223 25.2 26.4 19.3 0.1 06224 18.5 25.9 20.7 15.6 06224 18.5 25.9 20.7 15.6 06224 18.5 25.3 19.9 5.2 06225 18.1 26.7 20.7 27.4 06226 19.7 26.2 20.2 8.5 06227 20.9 24.6 20.6 1.1 06230 18.5 26.4 18.8 0.8 06231 17.9 23.8 20.6 13.8 06232 11.8 24.6 20.6 10.3 0623	@DATE	SRAD	TMAX	TMIN	RAIN	
06207 11.6 24.6 20.6 3.2 06208 17.9 22.4 19.8 12.3 06210 21.1 25.0 19.5 9.6 06211 20.7 25.7 19.3 4.9 06212 20.7 25.8 20.1 2.3 06213 21.8 25.3 20.6 12.3 06214 20.1 25.6 20.5 13.3 06214 20.1 25.6 20.5 13.3 06216 20.0 24.1 19.6 7.3 06217 17.7 24.0 19.5 5.9 06218 16.2 22.9 19.2 1.9 06219 19.0 23.2 20.1 0.2 06220 19.7 23.9 19.6 7.9 06221 21.2 25.6 18.6 1.0 06222 15.1 25.8 19.4 13.7 06223 25.2 26.4 19.3 0.1 06224 18.5 25.9 20.7 15.6 06225 18.1 26.7 20.7 27.4 06226 19.7 26.2 20.2 8.5 06229 22.7 27.2 17.9 0.0 06231 17.9 23.8 20.6 13.8 06232 11.8 24.6 20.6 10.3 06233 19.1 27.2 11.0 27.6 06234 17.0 24.2 16.2 1.6 06	06206	6.5	22.9	19.3	17.1	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	06207	11.6	24.6	20.6	3.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06208	17.9	22.4	19.8	12.3	
06210 21.1 25.0 19.5 9.6 06211 20.7 25.7 19.3 4.9 06213 21.8 25.3 20.6 12.3 06214 20.1 25.6 20.5 13.3 06215 14.5 24.1 21.0 8.5 06216 20.0 24.1 19.6 7.3 06217 17.7 24.0 19.5 5.9 06218 16.2 22.9 19.2 1.9 06220 19.7 23.2 20.1 0.2 06221 21.2 25.6 18.6 1.0 06222 15.1 25.8 19.4 13.7 06223 25.2 26.4 19.3 0.1 06224 18.5 25.9 20.7 15.6 06226 19.7 26.2 20.2 8.5 06227 20.9 24.6 20.6 1.1 06228 21.3 25.3 19.9 5.2 06228 21.3 25.3 19.9 5.2 06230 18.5 26.4 18.8 0.8 06231 17.9 23.8 20.6 13.8 06233 19.1 27.2 21.0 27.6 06234 17.0 24.2 16.2 1.6 06234 17.0 24.2 16.2 1.6 06234 13.4 25.0 19.2 10.8 06240 9.3 22.8 20.5 14.8 06241	06209	16.3	22.8	20.0	2.3	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	06210	21.1	25.0	19.5	9.6	
06212 20.7 25.8 20.1 2.3 06214 20.1 25.6 20.5 13.3 06215 14.5 24.1 21.0 8.5 06216 20.0 24.1 19.6 7.3 06217 17.7 24.0 19.5 5.9 06218 16.2 22.9 19.2 1.9 06219 19.0 23.2 20.1 0.2 06220 19.7 23.9 19.6 7.9 06221 21.2 25.6 18.6 1.0 06223 25.2 26.4 19.3 0.1 06224 18.5 25.9 20.7 15.6 06225 18.1 26.7 20.7 27.4 06226 19.7 26.2 20.6 1.1 06226 19.7 26.2 20.6 1.1 06226 19.7 26.2 20.6 1.1 06226 19.7 26.2 20.6 1.1 06226 19.7 27.2 17.9 0.0 06231 17.9 23.8 20.6 13.8 06232 11.8 24.6 20.6 10.3 06233 19.1 27.2 17.9 0.6 06234 17.0 24.2 16.2 1.6 06234 17.0 24.2 16.2 1.6 06234 17.0 24.2 10.8 6.3 06234 12.3 23.5 20.5 14.8 06240	06211	20.7	25.7	19.3	4.9	
06213 21.8 25.3 20.6 12.3 06214 20.1 25.6 20.5 13.3 06215 14.5 24.1 21.0 8.5 06216 20.0 24.1 19.6 7.3 06217 17.7 24.0 19.5 5.9 06218 16.2 22.9 19.2 1.9 06220 19.7 23.2 20.1 0.2 06221 21.2 25.6 18.6 1.0 06222 15.1 25.8 19.4 13.7 06224 18.5 25.9 20.7 15.6 06225 18.1 26.7 20.7 27.4 06226 19.7 26.2 20.2 8.5 06227 20.9 24.6 20.6 1.1 06228 21.3 25.3 19.9 5.2 06229 22.7 27.2 17.9 0.0 06231 17.9 23.8 20.6 13.8 06233 19.1 27.2 21.0 27.6 06234 17.0 24.2 16.2 1.6 06235 14.2 24.1 20.8 6.3 06236 13.0 25.3 20.6 11.1 06237 12.3 23.5 20.5 14.8 06233 19.1 27.2 16.2 1.6 06234 17.0 24.2 16.2 1.6 06234 13.0 25.5 17.0 0.0 062	06212	20.7	25.8	20.1	2.3	
06214 20.1 25.6 20.5 13.3 06215 14.5 24.1 21.0 8.5 06216 20.0 24.1 19.6 7.3 06217 17.7 24.0 19.5 5.9 06218 16.2 22.9 19.2 1.9 06220 19.7 23.2 20.1 0.2 06221 21.2 25.6 18.6 1.0 06222 15.1 25.8 19.4 13.7 06223 25.2 26.4 19.3 0.1 06224 18.5 25.9 20.7 15.6 06226 19.7 26.2 20.6 1.1 06226 19.7 26.2 20.6 1.1 06228 21.3 25.3 19.9 5.2 06229 22.7 27.2 17.9 0.0 06230 18.5 26.4 18.8 0.8 06231 17.9 23.8 20.6 13.8 06232 11.8 24.6 20.6 10.3 06233 19.1 27.2 21.0 27.6 06234 17.0 24.2 16.2 1.6 06235 14.2 24.1 20.8 6.3 06236 13.0 25.3 20.6 11.1 06236 13.0 25.3 20.6 11.1 06236 13.0 25.3 20.6 11.1 06236 13.0 25.3 20.6 11.1 06	06213	21.8	25.3	20.6	12.3	
06215 14.5 24.1 21.0 8.5 06216 20.0 24.1 19.6 7.3 06217 17.7 24.0 19.5 5.9 06218 16.2 22.9 19.2 1.9 06219 19.0 23.2 20.1 0.2 06220 19.7 23.9 19.6 7.9 06221 21.2 25.6 18.6 1.0 06222 15.1 25.8 19.4 13.7 06223 25.2 26.4 19.3 0.1 06224 18.5 25.9 20.7 7.4 06226 19.7 26.2 20.2 8.5 06227 20.9 24.6 20.6 1.1 06228 21.3 25.3 19.9 5.2 06229 22.7 27.2 17.9 0.0 06230 18.5 26.4 18.8 0.8 06231 17.9 23.8 20.6 13.8 06233 19.1 27.2 21.0 27.6 06234 17.0 24.2 16.2 1.6 06235 14.2 24.1 20.8 6.3 06236 13.0 25.3 20.5 14.8 06244 19.3 23.5 20.5 14.8 06244 19.3 23.6 19.2 10.8 06244 19.3 23.6 19.9 5.9 06244 19.3 23.6 19.3 1.3 06244	06214	20.1	25.6	20.5	13.3	
06216 20.0 24.1 19.6 7.3 06217 17.7 24.0 19.5 5.9 06218 16.2 22.9 19.2 1.9 06219 19.0 23.2 20.1 0.2 06220 19.7 23.9 19.6 7.9 06221 21.2 25.6 18.6 1.0 06223 25.2 26.4 19.3 0.1 06224 18.5 25.9 20.7 15.6 06225 18.1 26.7 20.2 8.5 06226 19.7 26.2 20.2 8.5 06227 20.9 24.6 20.6 1.1 06228 21.3 25.3 19.9 5.2 06230 18.5 26.4 18.8 0.8 06231 17.9 23.8 20.6 13.8 06232 11.8 24.6 20.6 10.3 06233 19.1 27.2 21.0 27.6 06234 17.0 24.2 16.2 1.6 06235 14.2 24.1 20.8 6.3 06236 13.0 25.3 20.6 11.1 06238 1.1 21.8 20.8 43.0 06244 9.3 22.8 20.9 0.0 06244 19.3 23.6 19.2 10.8 06244 19.3 23.6 13.3 1.3 06244 19.3 23.6 19.3 1.3 06244 <	06215	14.5	24.1	21.0	8.5	
06217 17.7 24.0 19.5 5.9 06218 16.2 22.9 19.2 1.9 06219 19.0 23.2 20.1 0.2 06220 19.7 23.9 19.6 7.9 06221 21.2 25.6 18.6 1.0 06222 15.1 25.8 19.4 13.7 06223 25.2 26.4 19.3 0.1 06224 18.5 25.9 20.7 15.6 06225 18.1 26.7 20.7 27.4 06226 19.7 26.2 20.2 8.5 06227 20.9 24.6 20.6 1.1 06228 21.3 25.3 19.9 5.2 06229 22.7 27.2 17.9 0.0 06230 18.5 26.4 18.8 0.8 06231 17.9 23.8 20.6 13.8 06233 19.1 27.2 21.0 27.6 06234 17.0 24.2 16.2 1.6 06235 14.2 24.1 20.8 6.3 06236 13.0 25.3 20.5 14.8 06240 9.3 22.8 20.5 14.8 06241 10.4 25.0 19.2 10.8 06244 19.3 23.6 19.3 1.3 06244 19.3 23.6 19.3 1.3 06244 19.3 22.5 17.0 0.1 06244	06216	20.0	24.1	19.6	7.3	
06218 16.2 22.9 19.2 1.9 06219 19.0 23.2 20.1 0.2 06220 19.7 23.9 19.6 7.9 06221 21.2 25.6 18.6 1.0 06223 25.2 26.4 19.3 0.1 06224 18.5 25.9 20.7 15.6 06225 18.1 26.7 20.7 27.4 06226 19.7 26.2 20.2 8.5 06227 20.9 24.6 20.6 1.1 06228 21.3 25.3 19.9 5.2 06229 22.7 27.2 17.9 0.0 06230 18.5 26.4 18.8 0.8 06231 17.9 23.8 20.6 13.8 06233 19.1 27.2 21.0 27.6 06234 17.0 24.2 16.2 1.6 06235 14.2 24.1 20.8 6.3 06236 13.0 25.3 20.6 11.1 06237 12.3 23.1 21.3 9.6 06238 1.1 21.8 20.8 43.0 06240 9.3 22.8 20.5 14.8 06241 10.4 25.0 19.2 10.8 06241 10.4 25.0 19.2 10.8 06244 19.3 23.6 19.3 1.3 06244 19.3 23.6 19.3 1.3 06244	06217	17.7	24.0	19.5	5.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06218	16.2	22.9	19.2	1.9	
06220 19.7 23.9 19.6 7.9 06221 21.2 25.6 18.6 1.0 06222 15.1 25.8 19.4 13.7 06223 25.2 26.4 19.3 0.1 06224 18.5 25.9 20.7 15.6 06225 18.1 26.7 20.7 27.4 06226 19.7 26.2 20.2 8.5 06227 20.9 24.6 20.6 1.1 06228 21.3 25.3 19.9 5.2 06229 22.7 27.2 17.9 0.0 06230 18.5 26.4 18.8 0.8 06231 17.9 23.8 20.6 13.8 06233 19.1 27.2 21.0 27.6 06234 17.0 24.2 16.2 1.6 06235 14.2 24.1 20.8 6.3 06236 13.0 25.3 20.6 11.1 06237 12.3 23.1 21.3 9.6 06238 1.1 21.8 20.8 43.0 06239 2.8 23.5 20.5 14.8 06240 9.3 22.8 20.9 0.0 06241 10.4 25.0 19.2 10.8 06242 13.4 25.5 17.0 0.1 06244 19.3 23.6 19.3 1.3 06244 19.3 22.5 19.7 2.2 06244	06219	19.0	23.2	20.1	0.2	
06221 21.2 25.6 18.6 1.0 06223 25.2 26.4 19.3 0.1 06224 18.5 25.9 20.7 15.6 06225 18.1 26.7 20.7 27.4 06226 19.7 26.2 20.2 8.5 06227 20.9 24.6 20.6 1.1 06228 21.3 25.3 19.9 5.2 06229 22.7 27.2 17.9 0.0 06231 18.5 26.4 18.8 0.8 06231 17.9 23.8 20.6 13.8 06232 11.8 24.6 20.6 10.3 06233 19.1 27.2 21.0 27.6 06234 17.0 24.2 16.2 1.6 06235 14.2 24.1 20.8 6.3 06236 13.0 25.3 20.6 11.1 06237 12.3 23.1 21.3 9.6 06238 1.1 21.8 20.8 43.0 06244 9.3 22.8 20.9 0.0 06241 10.4 25.0 19.2 10.8 06244 19.3 23.6 19.3 1.3 06245 23.0 25.5 17.0 0.1 06246 23.4 24.6 18.8 13.4 06246 23.4 24.6 18.8 13.4 06244 19.3 23.6 19.3 1.3 0624	06220	19.7	23.9	19.6	7.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06221	21.2	25.6	18.6	1.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06222	15.1	25.8	19.4	13.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06223	25.2	26.4	19.3	0.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06224	18.5	25.9	20.7	15.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06225	18.1	26.7	20.7	27.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06226	19.7	26.2	20.2	8.5	
0622821.321.325.319.95.20622922.727.217.90.00623018.526.418.80.80623117.923.820.613.80623211.824.620.610.30623319.127.221.027.60623417.024.216.21.60623514.224.120.86.30623613.025.320.611.10623712.323.121.39.6062381.121.820.843.0062392.823.520.514.8062409.322.820.90.00624110.425.019.210.80624213.425.118.50.20624315.623.818.95.90624419.323.619.31.30624523.025.517.00.10624623.424.618.813.40624717.322.219.72.20624820.522.519.10.00624918.623.317.60.0	06227	20.9	24.6	20.6	1.1	
0.6229 22.7 27.2 17.9 0.0 06230 18.5 26.4 18.8 0.8 06231 17.9 23.8 20.6 13.8 06232 11.8 24.6 20.6 10.3 06233 19.1 27.2 21.0 27.6 06234 17.0 24.2 16.2 1.6 06235 14.2 24.1 20.8 6.3 06236 13.0 25.3 20.6 11.1 06237 12.3 23.1 21.3 9.6 06238 1.1 21.8 20.8 43.0 06239 2.8 23.5 20.5 14.8 06240 9.3 22.8 20.9 0.0 06241 10.4 25.0 19.2 10.8 06242 13.4 25.1 18.5 0.2 06244 19.3 23.6 19.3 1.3 06245 23.0 25.5 17.0 0.1 06246 23.4 24.6 18.8 13.4 06246 23.4 24.6 18.8 13.4 06247 17.3 22.2 19.7 2.2 06248 20.5 22.5 19.1 0.0 06249 18.6 23.3 17.6 0.0	06228	21.3	25.3	19.9	5.2	
06230 18.5 26.4 18.8 0.8 06231 17.9 23.8 20.6 13.8 06232 11.8 24.6 20.6 10.3 06233 19.1 27.2 21.0 27.6 06234 17.0 24.2 16.2 1.6 06235 14.2 24.1 20.8 6.3 06236 13.0 25.3 20.6 11.1 06237 12.3 23.1 21.3 9.6 06238 1.1 21.8 20.8 43.0 06239 2.8 23.5 20.5 14.8 06240 9.3 22.8 20.9 0.0 06241 10.4 25.0 19.2 10.8 06242 13.4 25.1 18.5 0.2 06243 15.6 23.8 18.9 5.9 06244 19.3 23.6 19.3 1.3 06245 23.0 25.5 17.0 0.1 06246 23.4 24.6 18.8 13.4 06247 17.3 22.2 19.7 2.2 06248 20.5 22.5 19.1 0.0 06249 18.6 23.3 17.6 0.0	06229	22.7	27.2	17.9	0.0	
0.623117.923.820.613.80.623211.824.620.610.30.623319.127.221.027.60.623417.024.216.21.60.623514.224.120.86.30.623613.025.320.611.10.623712.323.121.39.60.62381.121.820.843.00.62392.823.520.514.80.62409.322.820.90.00.624110.425.019.210.80.624213.425.118.50.20.624315.623.818.95.90.624419.323.619.31.30.624523.025.517.00.10.624623.424.618.813.40.624717.322.219.72.20.624820.522.519.10.00.624918.623.317.60.0	06230	18.5	26.4	18.8	0.8	
0623211.824.620.610.30623319.127.221.027.60623417.024.216.21.60623514.224.120.86.30623613.025.320.611.10623712.323.121.39.6062381.121.820.843.0062392.823.520.514.8062409.322.820.90.00624110.425.019.210.80624213.425.118.50.20624315.623.818.95.90624419.323.619.31.30624523.025.517.00.10624623.424.618.813.40624717.322.219.72.20624820.522.519.10.00624918.623.317.60.0	06231	17.9	23.8	20.6	13.8	
0623319.127.221.027.60623417.024.216.21.60623514.224.120.86.30623613.025.320.611.10623712.323.121.39.6062381.121.820.843.0062392.823.520.514.8062409.322.820.90.00624110.425.019.210.80624315.623.818.95.90624419.323.619.31.30624523.025.517.00.10624623.424.618.813.40624717.322.219.72.20624820.522.519.10.00624918.623.317.60.0	06232	11 8	24 6	20.6	10 3	
0623417.024.216.21.60623514.224.120.86.30623613.025.320.611.10623712.323.121.39.6062381.121.820.843.0062392.823.520.514.8062409.322.820.90.00624110.425.019.210.80624213.425.118.50.20624315.623.818.95.90624419.323.619.31.30624523.025.517.00.10624623.424.618.813.40624717.322.219.72.20624820.522.519.10.00624918.623.317.60.0	06233	19.1	27.2	20.0	27.6	
06235 14.2 24.1 20.8 6.3 06236 13.0 25.3 20.6 11.1 06237 12.3 23.1 21.3 9.6 06238 1.1 21.8 20.8 43.0 06239 2.8 23.5 20.5 14.8 06240 9.3 22.8 20.9 0.0 06241 10.4 25.0 19.2 10.8 06242 13.4 25.1 18.5 0.2 06243 15.6 23.8 18.9 5.9 06244 19.3 23.6 19.3 1.3 06245 23.0 25.5 17.0 0.1 06246 23.4 24.6 18.8 13.4 06247 17.3 22.2 19.7 2.2 06248 20.5 22.5 19.1 0.0 06249 18.6 23.3 17.6 0.0	06234	17 0	24 2	16 2	1 6	
0623613.025.320.611.10623712.323.121.39.6062381.121.820.843.0062392.823.520.514.8062409.322.820.90.00624110.425.019.210.80624315.623.818.95.90624419.323.619.31.30624523.025.517.00.10624623.424.618.813.40624717.322.219.72.20624820.522.519.10.00624918.623.317.60.0	06235	14.2	24.1	20.8	£.3	
0623712.323.121.39.6062381.121.820.843.0062392.823.520.514.8062409.322.820.90.00624110.425.019.210.80624315.623.818.95.90624419.323.619.31.30624523.025.517.00.10624623.424.618.813.40624717.322.219.72.20624820.522.519.10.00624918.623.317.60.0	06236	13 0	25 3	20.6	11 1	
062381.121.820.843.0062392.823.520.514.8062409.322.820.90.00624110.425.019.210.80624213.425.118.50.20624315.623.818.95.90624419.323.619.31.30624523.025.517.00.10624623.424.618.813.40624717.322.219.72.20624820.522.519.10.00624918.623.317.60.0	06237	12 3	23.5	20.0	9 6	
062392.823.520.514.8062409.322.820.90.00624110.425.019.210.80624213.425.118.50.20624315.623.818.95.90624419.323.619.31.30624523.025.517.00.10624623.424.618.813.40624717.322.219.72.20624820.522.519.10.00624918.623.317.60.0	06238	1 1	21 8	20.8	43 0	
062209.322.820.90.00624110.425.019.210.80624213.425.118.50.20624315.623.818.95.90624419.323.619.31.30624523.025.517.00.10624623.424.618.813.40624717.322.219.72.20624820.522.519.10.00624918.623.317.60.0	06239	2 8	23 5	20.5	14 8	
0624110.425.019.210.80624213.425.118.50.20624315.623.818.95.90624419.323.619.31.30624523.025.517.00.10624623.424.618.813.40624717.322.219.72.20624820.522.519.10.00624918.623.317.60.0	06240	93	22.8	20.9	0.0	
06242 13.4 25.1 18.5 0.2 06243 15.6 23.8 18.9 5.9 06244 19.3 23.6 19.3 1.3 06245 23.0 25.5 17.0 0.1 06246 23.4 24.6 18.8 13.4 06247 17.3 22.2 19.7 2.2 06248 20.5 22.5 19.1 0.0 06249 18.6 23.3 17.6 0.0	06241	10 4	25.0	19 2	10 8	
06243 15.6 23.8 18.9 5.9 06244 19.3 23.6 19.3 1.3 06245 23.0 25.5 17.0 0.1 06246 23.4 24.6 18.8 13.4 06247 17.3 22.2 19.7 2.2 06248 20.5 22.5 19.1 0.0 06249 18.6 23.3 17.6 0.0	06242	13 4	25.0	18 5	0 2	
06244 19.3 23.6 19.3 1.3 06245 23.0 25.5 17.0 0.1 06246 23.4 24.6 18.8 13.4 06247 17.3 22.2 19.7 2.2 06248 20.5 22.5 19.1 0.0 06249 18.6 23.3 17.6 0.0	06243	15 6	23.2	18 9	59	
06245 23.0 25.5 17.0 0.1 06246 23.4 24.6 18.8 13.4 06247 17.3 22.2 19.7 2.2 06248 20.5 22.5 19.1 0.0 06249 18.6 23.3 17.6 0.0	06244	19.3	23.6	19.3	1.3	
06246 23.4 24.6 18.8 13.4 06247 17.3 22.2 19.7 2.2 06248 20.5 22.5 19.1 0.0 06249 18.6 23.3 17.6 0.0	06245	23 0	25.5	17 0	0 1	
06247 17.3 22.2 19.7 2.2 06248 20.5 22.5 19.1 0.0 06249 18.6 23.3 17.6 0.0	06246	23.0	24 6	18 8	13 4	
06248 20.5 22.5 19.1 0.0 06249 18.6 23.3 17.6 0.0	06247	17 3	22.2	19.0	2 2	
06249 18.6 23.3 17.6 0.0	06248	20.5	22.5	19.1	0.0	
	06249	18.6	23.3	17.6	0.0	
06250 18.4 23.1 19.5 0.0	06250	18 4	23.3	19 5	0.0	
06251 14.1 23.2 19.5 42.8	06251	14.1	23.2	19.5	42.8	
06252 2 3 24 4 20 5 71 3	06252	2 3	24 4	20 5	71 3	
06252 2.5 2111 20.8 33.0	06253	2.5	24 1	20.8	33 0	
06254 8.6 23.6 20.2 7.9	06254	8.6	23.6	20.2	7.9	
06255 16.2 24.6 18.9 11.8	06255	16.2	24.6	18.9	11.8	
06256 15.8 24.1 19.0 5.4	06256	15.8	24.1	19.0	5.4	
06257 19.6 24.3 18.6 1.3	06257	19 6	24 3	18 6	1.3	
06258 17.8 22.3 18.2 12.7	06258	17 8	22 3	18 2	12 7	
06259 20.2 24.0 18.0 0.1	06259	20.2	24.0	18.0	0.1	
06260 17.2 23.7 19.3 0.7	06260	17.2	23.7	19.3	0.7	
06261 16.9 23.8 19.0 3.5	06261	16.9	23.8	19.0	3.5	

@DATE	SRAD	TMAX	TMIN	RAIN	
06262	19.5	25.4	18.7	1.8	
06263	18.1	24.8	19.8	3.3	
06264	11.6	23.0	17.7	0.0	
06265	4.3	24.8	18.0	1.4	
06266	8.8	23.8	19.6	3.7	
06267	7.2	24.1	17.9	35.1	
06268	8.6	22.5	19.0	10.1	
06269	20.7	23.5	18.5	0.0	
06270	20.0	24.4	16.8	0.0	
06271	20.3	25.4	15.0	0.0	
06272	20.9	24.7	16.6	2.8	
06273	16.8	23.7	17.9	0.9	
06274	20.6	22.1	16.5	0.0	
06275	17.1	23.9	19.6	0.0	
06276	19.7	24.4	16.2	0.0	
06277	18.9	24.7	15.1	0.0	
06278	22.5	22.4	14.3	0.0	
06279	16.1	21.3	14.2	3.4	
06280	16.5	22.3	15.8	0.3	
06281	17.5	21.9	15.2	0.0	
06282	20.4	22.2	15.8	0.0	
06283	20.3	22.8	14.9	0.0	
06284	17.7	22.9	13.4	0.0	
06285	15.0	22.6	14.4	2.2	
06286	14.7	21.0	13.2	0.1	
06287	16.8	22.5	2.0	0.0	
06288	17.9	22.1	13.9	0.0	
06289	18.9	22.8	13.1	0.0	

Appendix 19. Calibration runs to determine genetic coefficients of Local maize during

Run No.	Genetic coefficient							Simulated Value		
	P1	P2	P3	G2	G3	PHINT	А	PM	GY	
1.	365	0.520	850	680	6.50	38.90	61	100	4136	
2.	355	0.520	850	680	6.50	38.90	61	100	413	
3.	345	0.520	850	680	6.30	38.90	59	99	4038	
4.	335	0.520	850	680	6.20	38.90	59	99	398.	
5.	325	0.520	850	680	6.10	38.90	57	97	391	
6.	315	0.520	850	680	6.00	38.90	57	97	384′	
7.	305	0.520	850	680	5.90	38.90	57	97	378.	
8.	295	0.520	850	680	5.80	38.90	55	95	357	
9.	285	0.520	850	680	5.70	38.90	55	95	351	
10.	275	0.520	850	680	5.60	38.90	54	93	309	
11.	265	0.520	850	680	5.50	38.90	54	93	304	
12.	255	0.520	850	680	5.40	38.90	51	91	292	
13.	245	0.520	850	680	5.42	38.90	51	91	2934	
14.	235	0.520	850	680	5.42	38.90	49	89	271	
15.	230	0.520	940	360	9.28	38.90	49	94	3124	

Dun No			Genetic	coefficier	nt		Simulated value		
Kun No.	P1	P2	P3	G2	G3	PHINT	А	PM	GY
1.	370	0.800	785	907.9	10.15	38.90	63	99	7243
2.	380	0.700	885	907.9	10.15	38.90	64	106	6106
3.	390	0.600	985	907.9	10.15	38.90	63	109	8972
4.	400	0.600	985	907.9	10.15	28.10	62	108	9809
5.	400	0.600	985	907.9	9.15	18.90	61	107	8424
6.	400	0.600	985	907.9	8.15	18.90	61	107	7504
7.	400	0.600	985	907.9	7.15	18.90	61	107	6583
8.	400	0.600	985	907.9	6.15	18.90	61	107	5662
9.	400	0.600	985	907.9	5.15	18.90	61	107	4742
10.	400	0.600	985	907.9	5.25	18.90	61	107	4834
11.	400	0.600	985	907.9	5.35	18.90	61	107	4926
12.	400	0.600	985	907.9	5.45	18.90	61	107	5018
13.	400	0.600	985	907.9	5.50	18.90	61	107	5110
14.	400	0.600	985	907.9	5.60	18.90	61	107	5202
15.	400	0.600	1130	590.9	8.38	18.90	61	114	5931

Appendix 20. Calibration runs to determine genetic coefficients of Poshilo makai-1 during spring, 2013 at Shivamandir-2, Nawalparasi

Appendix 21. Calibration runs to determine genetic coefficients of RML-4/17 during spring, 2013 at Shivamandir-2, Nawalparasi

Dun No			Simulated value						
Kull NO.	P1	P2	P3	G2	G3	PHINT	А	PM	GY
1.	345	0.260	825	907.9	9.80	18.9	55	94	7336
2.	365	0.260	825	907.9	9.80	8.9	54	93	6001
3.	380	0.260	825	907.9	8.80	8.9	56	95	6173
4.	380	0.260	825	907.9	7.80	8.9	56	95	5471
5.	380	0.260	850	887.9	7.70	8.9	56	96	5506
6.	380	0.260	875	867.9	7.70	8.9	56	97	5592
7.	380	0.260	900	847.9	7.70	8.9	56	98	5667
8.	380	0.260	925	827.9	7.70	8.9	56	100	5907
9.	380	0.260	950	807.9	7.60	8.9	56	101	5816
10.	380	0.260	975	807.9	7.50	8.9	56	102	5857
11.	380	0.260	1000	807.9	7.40	8.9	56	103	5906
12.	380	0.260	1100	807.9	7.36	8.9	56	108	6547
13.	380	0.260	1200	807.9	7.36	8.9	56	112	7037
14.	380	0.260	1290	807.9	7.36	8.9	56	116	7687
15.	380	0.260	1290	816.9	7.36	8.9	56	116	7685

Run No.			Si	Simulated value					
	P1	P2	P3	G2	G3	PHINT	А	PM	GY
1.	300	0.520	990	440	7.00	38.90	55	102	3548
2.	280	0.520	990	440	7.00	38.90	54	100	3346
3.	260	0.520	990	440	7.00	38.90	51	98	3295
4.	240	0.520	990	440	7.00	38.90	49	96	3057
5.	230	0.520	980	440	7.00	38.90	49	96	2956
6.	230	0.520	970	440	7.20	38.90	49	95	3041
7.	230	0.520	960	440	7.40	38.90	49	95	3017
8.	230	0.520	950	440	7.60	38.90	49	94	3099
9.	230	0.520	940	440	7.80	38.90	49	94	3080
10.	230	0.520	930	440	8.00	38.90	49	93	3159
11.	230	0.520	920	440	8.20	38.90	49	93	3238
12.	230	0.520	910	440	8.40	38.90	49	92	3201
13.	230	0.520	910	440	8.60	38.90	49	92	3277
14.	230	0.520	910	440	8.80	38.90	49	92	3353
15.	230	0.520	910	440	9.88	38.90	49	92	3768

Appendix 22. Calibration runs to determine genetic coefficients of Arun-2 during spring, 2013 at Shivamandir-2, Nawalparasi

BIOGRAPHICAL SKETCH

Mr. Umesh Shrestha, was born on 3rd October, 1988 in Mangalpur-1, Chitwan as elder son of Mr. Mukunda Shrestha and Mrs. Renu Shrestha. He has received his School leaving Certificate from Pragati Shiksha Sadan, East Rampur, Chitwan in 2004 A.D. He has passed his Intermediate level from Orchid science college, Bharatpur, Chitwan in 2007 A.D. After that he joined Institute of Agriculture and Animal science (IAAS), Rampur, Chitwan and completed the Bachelor degree with major in plant pathology in 2012 A.D. Just After his graduation, he was enrolled on post graduate programme in the same Institute to persue his Master's degree in Agronomy in 2014 A.D.

At present he is living happily with his family and friends.

Author